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ABSTRACT. We describe a new algorithm for matching star lists, given by their two-dimemnsional
coordinates. Such matching should be unaffected by translation, rotation, rescaling, random perturba-
tions, and scome random additions and deletions of coordinate couples in one list relative to another. The
first phase of the algorithm is based on a characterization of a set of coordinate couples, relative to each
individual coordinate couple. In the second phase of the algorithm, the matching of stars in different
lists is based on proximity of feature vectors associated with coordinate couples in the two lists. The
order of magnitude computational complexity of the overall algorithm is n? for O(n) coordinate couples

in the coordinate lists.

1. INTRODUCTION

The problem of ipoint-pattern matching arises in two-
dimensional (2D) jphotometry, and in matching star lists
against catalog inforrmation. The former area will be most
at issue in this article. Star lists (i.e., centroids of star
positions) can arise: through different fitting procedures, or
different 2D photormetry packages used on the same field,
or through the redwiction of images based on different color
filters, or through weduction of partially overlapping im-
ages taken at differeent times or with different detectors.

The term “poinit” (coordinates, ordinarily in two-di-
mensional space) wwill be used for the star centroid, or
central location, in ithis article. A matching of some points
from one list witla some points in the other list(s) is
sought. Equivalentity the transformation which optimally
maps one list into tthe other is sought.

The next sectior: reviews some approaches adopted for
this problem, in astronomy and in computer vision gener-
ally.

2. A SHORT REVIEW OF APPROACHES

The matching of two- or three-dimensional points from
two lists is a very wommon problem. Many further refer-
ences can be found in the works cited in this section. Fol-
lowing a short reviiew of diverse approaches which have
been applied to this. problem, we indicate some of the (mi-
nor) differences bet:ween this problem as it manifests itself
in astronomical imzge processing, compared to other areas
of machine vision. Finally, in this section, we describe ap-
proaches which hawe been used for the astronomical prob-
lem.

Umeyama (1991%) discusses a least-squares solution to
transformations cormprising rotation, translation, and scal-
ing on a given set off points. Hence the point-set A, and the
point-set B, have the same cardinality (i.e., number of
points). The points can be m-dimensional, where integer m
is possibly greater than 3. The optimization problem is set
up, and solved, in mmatrix algebra terms. A number of ear-
lier references are ciited which solve this least-squares prob-
lem for three-dimemsional data.
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Griffen and Alexopoulos (1989) also wseek a matching
which is invariant to translation, rotation, scaling, and
noise for point-sets A and B of the same cardinality.
Firstly, the smallest enclosing circles for the two point sets
are obtained. Next, the centroids of both circles are deter-
mined. The translation between the two point sets is deter-
mined from knowledge of these two centroids. In both A
and B, points are then sorted lexicographically by polar
angle (from a given horizontal axis) and distance from the
centroid of the point set. Conditions axe given for the
matching of points using this informatiom. In the case of
noisy point positions, the problem is formmulated as a max-
imum cardinality graph-matching probkem. In our ap-
proach, described later, we also use am ordered list of
points, but these are ordered relative to each point in turn,
rather than just from the overall centroid of the point set.

In astronomy as will be mentioned beliow, point-sets A
and B are unlikely to be of identical cardinality. Ogawa
(1986) considers lists A and B of differing cardinalities,
i.e., if list B is derived from A, then somne additions and
deletions of points are allowed. His approach is invariant
to translation, scale, and random perturbation, in addition
to addition/deletion, given two-dimensiomal point sets. A
Delaunay triangulation is used to tessellate the planes. Al-
though computationally much less demanding than the tri-
angulation-based approaches of Groth amd Stetson (dis-
cussed below), we would question the sensitivity of a
Delaunay triangulation alone for capturing the informa-
tion inherent in real data sets which we: have looked at.
Ogawa’s (1986) approach proceeds by meatching triangles
using ‘“‘labels” (weights, e.g., astronommical magnitude
ranges), leading to a consistency graplh between point
pairs. A maximal clique (maximal complete subgraph) is
sought in this graph. The approach is illustrated on stellar
constellations, including using a cylindrical projection of a
given point set.

Wong and Salay (1986) use the terna ‘“‘constellation”
for point patterns in 3D and stereoscopic wision. A branch-
and-bound algorithm is used to expeditiiously search all
possible combinations of points, making wse of a cost func-
tion based on pairwise Euclidean distances between points
in one set and points in the other.

Parvin and Medioni (1989) set up the point pattern
problem (for 3D data in industrial vision} as a constraint-
satisfaction problem. An objective function is formulated
from the many constraints, and is solved wsing a Hopfield-
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Tank neural network approach. Parenthetically, it is posi-
sible, although not so far demonstrated for this problenm,
that the very efficient constraint-satisfaction approach cur-
rently used for Hubble Space Telescope observation (expa-
sure) schedulimg in the PEPSI system (see Johnston and
Adorf 1991) wwould perform very well on such a formula-
tion of the poimt-pattern matching problem. A further ref-
erence to point-pattern matching, using a Hopfield-Tank
neural network approach, is Nasrabadi and Choo (1992).
This latter reference obtains so-called “‘interesting points™
from two-dimemsional digital images. These are salient
points in the two images which can be more easily matched
than other points. A matching of the two-dimensional im--
ages is sought, based on the sets of “interesting points™
derived from thiese images.

Chen and Huang (1991), in the context of determining
three-dimensiomal point correspondences in the study of
motion, assume a rigidity constraint involving distances
between points and angles between lines joining the points.
They seek an umambiguous match, subject to such rigidity,
and develop a least-squares solution.

As mentioned in the above, the astronomical matching
problem is chamracterized by (i) additions and deletions
between lists A and B, due to results of different colow
filters, etc.; (i) potentially large numbers of points are att
issue (although labeling, in the guise of stellar magnitudes,,
can allow selection); (iii) in common with other fields,
invariance relative to translation, rotation, scaling, and!
small random errors is sought. Magnitudes may be used!
not just for selection but furthermore astronomical match-
ing may explicitly aim at a weighted matching, where the:
weights associated with points are magnitude related. Im
2D photometry work, there may well be less need to con-
sider a point set of small cardinality (a “model,” in the
terminology of ©gawa 1984) to be matched against a point
set of larger cardinality (a “world”), as might be the case:
in industrial vision. This situation may be different whem
matching a set of points against catalog information. The:
very large set cardinalities in question here require other
solutions (cf. below in the treatment of Figs. 5 and 6).

We now briefly review three approaches used in the:
astronomical comtext. Routine PAIR, authored by A. Laub-
erts, has been in use in the European Southern Observatory
for many years. It assumes a translation between A and B
only. The Euclidean distance between each point / in A andt
each point /' im B is determined. If i'=i+c, then d2(i,i")
=c¢? for matched points, and one would expect a spreadi
distribution of walues for distances with points i” in B
which ought net to be matched. Thus the mode of all
pairwise distances (between all 7 in A and all i’ in B) allows:
the value ¢ to be determined. This approach is invariant te
translation and random perturbation.

The use of a Delaunay triangulation to capture affine-
invariant information on point-pattern interrelationships
has been mentioned. Groth (1986) implements an all-tri-
angles matching approach. A range of speedups are applied
to cut down on: the matching of all triangles from the first
list, i.e., O(n3), with a similar list from the second list. The:
principle efficienicy tactic is to only match triangles with a:
ratio of longest side to shortest side which is within some:
tolerance. Groth finds the order-of-magnitude increase im
computation to be improved from O(n%) to O(n*s). It is;
recommended that the number of points in both lists be:
limited to between 20 and 30 points for computational

reasons, and such a selection may be carried out on the
basis of the magnitudes associated with points.

Stetson (1990), discussing an algorithm he developed
many years earlier, also implemented a triangle-based
matching algorithm. Points are considered in order of de-
creasingly important magnitude. Following an initial
matching of a small number (three} of highly weighted
points, further points are added one at a time. Hence the
procedure, reasonably, is biased towards points of large
weight (i.e., of important magnitude ). Imprecision in mea-
surement of magnitudes is taken into account to the extent
that rank orders of magnitudes are used.

3. THE PROPOSED METHOD

For each point, /, in either list, a “‘world-view” vector is
determined. This vector represents the n — 1 other points in
the same list, as “‘seen’’ from point i. Relative to an initially
arbitrary horizontal axis, the angles subtended by the n— 1
other points to the given point, i/, are determined and
sorted. We consider here, and in our experimentation, only
two-dimensional point sets: angles could not be trivially
sorted in dimensions higher than 3. At the angle subtended
by j relative to i, we consider the effect of j as being related
to d(j,i), the usual Euclidean distance. We define the effect
of j on i as K—d(ij), where K is a constant which is
somewhat greater than the maximum d(i,j) for all i,j. For
scale independence, the value of K—d'(i,j) is mapped onto
[0,1] (by subtracting the minimum swch value, and divid-
ing by the maximum minus the minimmum).

We experimented with the incorporation of magnitudes
into this “effect-of-j-on-i” term, leading for example to
w, /dz(z,]), where w, was the magnitude of star j. An alter-
native scheme is to use |w,— wj] [K—d(ij)]. We cur-
rently recommend against domg this, since there can be
appreciable differences in the distributions of the values of
the two terms [ie., |w,—w;| and K—d(i,j), for all pairs
1,j]. Consequently one or other of these terms can predom-
inate.Standardization or normalization, per se, does not
allow us to bypass this difficulty.

To summarize: with each point 7 in a given point
list containing in total » points, we now have a set of
“effect”” terms induced by the remaining n—1 points.
These “‘effect” terms, {p |j=1,2,...,m; j54i}, have a value
p; =K_d(i]). Furthermore, this set of ‘“‘effect” terms is
ordered by the angle between j and an arbitrary axis
through /. Without loss of generality, this arbitrary axis
may be taken as parallel to the x axis of the given coordi-
nate values, and the ordering may be determined in a coun-
terclockwise fashion.The “world view” of point / is thus
expressed by this ordered set of n— 1 walues. Matching will
later be carried out by seeking a poimt, or points, in the
second list with a similar “world view.”

The “world-view” list of i may be interpreted as the set
of projections (defined in a particular way) of n— 1 points
onto the unit circle of center 7.

Any “world view” in point set A is an ordered (n—1)
list. Any “world view” in point set B is an ordered (m—1)

-list. Optimally matching vectors of differing lengths can be

carried out using dynamic programuming. See Kruskal
(1983), Sankoff and Kruskal (1983), or Hall and Dowling
(1980) for discussion and practical examples. We adopted
a different approach. Given that two-dimensional data is
under consideration, the angles necessarily lie between 0°
and 360°. Hence, instead of using the given ordered list, we



map this into a list of length 360 corresponding to the
“world view” of a point sampled at 1° intervals. The choice
of 1° intervals is quite arbitrary. It was found to offer a
good compromise between sensitivity and computational
cost. Experiments with of the order of 20-70 points in two
lists, using 10° intervals, were also successful. To determine
the “world view” at a given angle (at an interval of 1° from
the previous and subsequent angles), we interpolated from
values of p at the angles which were larger and smaller.
Note that we must allow for the fact that angles mod 360
are used. Linear interpolation was used: it was simple to
implement, and gave satisfactory results.

Rebinning the “world-view” vectors in this manner was
carried out to allow the wse of the usual Euclidean distance
between the new (360-walued) vectors. There are pitfalls
here: /inear rebinning dioes not necessarily take a continu-
ous “world view” into account; rebinning to 1° intervals
may not be appropriate for dense point sets; more awk-
wardly such bin sizes may well be problematic for closely
packed points in a given point set. Although the simple
approach adopted worlked well, it is clear that further
study of these issues comld be profitable.

One aspect of the linear interpolation to 1° intervals will
be commented upon. Points which are outlying have a
“world view” which is entirely encompassed within a lim-
ited range of angles. This angle interval can be small (e.g.,
considerably less than 45°: cf. points towards the four cor-
ners of the point sets shown in the figures below). We
found it unproductive to determine (interpolated) p values
outside of this angle interval. Hence we did not approach
the interpolation on the basis of a sequence of angles with
1° separations, determiining p values on each occasion.
Rather, we took the initially given set of angles associated
with any point’s ordered “world-view” list, and interpo-
lated at the 1°-separation angles which were covered or
spanned by this.

As is clear from the foregoing, particular implementa-
tion choices were made in a number of instances. The so-
lution proffered thus far can be stated as follows:

(1) The effect of j om 7 is given by K—d(i,j). The asso-
ciated angle is 6,. The “world view” of i is the set {K
—d(i,j) | 1<j<n—1}, which is ordered by increasing value
of {6,] 1<jgn—1}.

(2) Each such (n—1)-valued “world-view” vector is
mapped (by linear interpolation) onto a new 360-valued
“world-view” vector.

The “world view” of any point, expressed as an ordered
360 list, is now directly comparable irrespective of what
point set the point came from. The (360-valued) “world-
view” vector of points is now compared to the “world-
view” vectors of all peints in the second point set. The
usual Euclidean distance is used. Point i is matched with a
point from the second jpoint set when the corresponding
“world-view” vectors hiave minimum Euclidean distance.

This minimum Euclidean distance can be used as a mea-
sure of how good the match is, since it represents how
similar the “world views” are. To facilitate interpretation,
such match values are discretized to a [1,10] confidence
scale. This allows the results of the matching to be ex-
pressed as “Point i from the first list is mapped onto point
i’ from the second list, with confidence 4,” for example.
Only matches above some user-specified confidence thresh-
old, which correspond to small distances between “world-
view” profiles, are used to determine an expression for the
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overall transformation between A and B. A threshold con-
fidence of 3 (i.e., confidences=1, 2, or 3) was found to
perform well.

Even within these high-confidence matches, there can be
discrepancies. An average high-confidence transformation
could be determined, which takes A into B. We instead
favored a robust estimate, and found the median of these
high-confidence values to provide satisfactory results.

Rotation is incorporated into this algorithm as follows.
We consider all possible matchings between A, and 360
versions of B: i.e., the “world-view” vectors of B would be
all together rotated by 1° in successive versions. We would
seek a best matching from the 360 results. Computation-
ally, this implies 360 runs of the above algorithm. If the
user knows the approximate angle of rotatiom, then some
restricted angle interval alone can be searched. We have
experimented with all 360 rotations of point-set B vis a vis
poimt-set A, and also restricted (e.g., 10°) imtervals, and
results were quite conclusive in all cases. The enhanced
algorithm to handle rotation is as follows:

{1) For a given point in point-set A, and for each per-
mitted rotation angle (by convention, point-set B is ro-
tated), determine the best matching point in point-set B.
Store the following: the given point in poimt-set A; the
matched point in point-set B; and the rotation angle of
poimt-set B with which this match is associated.

{2) Define the appropriate rotation angle for point-set B
as that angle for which the majority of best matches were
found.

In our experimentation, we have generally found 80%-
909% of matches to indicate a unique rotation angle. A
lower threshold of, e.g., 30% is currently used to signal a
lack-of-consensus situation, and hence unmatchable point
sets.

As currently implemented, we have not catered for
“flipping” of points, i.e., reflection in an arbitrary axis. A
solution to this could be based on reversing the order of the
“world-view” vector values of one of the poimt sets.

Ef O(n) points are provided in either point sets, our
approach requires O(n?) time to determine the ‘“‘world
views” of all points, and subsequently O(n?) time to carry
out the matching. Storage is seen to be O(n?).
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Star positions [Stetson.2]
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FuG. 2—A point set, to be compared with Fig. 1.

4. RESULTS

Figures. 1 and 2 show the result of two reductions of
images of the open cluster M11, obtained and studied by
Stetson using DAOPHOT in 1985. Note, for example, how
28, 26 and 43, 61, 58, 24 in the first point set ought to map
onto 27, 25 and 36, 57, 52, 23. Note that 38, 20, 45, 14 in
the upper left-hand side of the first point set are absent in
the second point set. The matching obtained by Stetson’s
triangle-based matching approach (discussed in Sec. 2
above) is shown in Table 1.

The resumlts obtained by the approach described im this
paper are shown in Table 2. Note that not all correspon-
dences between points in the two lists are well matched,
but that am acceptable subject of points are. The mapping
of 9 onto 4%, for instance, is correctly downgraded im con-
fidence by our algorithm. Note how 5, 16, 2, 23, 56 from
the first poant set (Fig. 1) are correctly mapped witht high
confidence onto 5, 16, 2, 26, 51 (respectively) from the
second point set (Fig. 2). A sufficient number of high-
confidence correspondences suffices to define the appropri-
ate mapping which takes the first point set onto the second.

The exact value of our translation vector, taking the first
point set irto the second point set, differs in precision from
that yielded by Stetson’s algorithm (cf. these translations
as given towards the ends of Tables 1 and 2). Note that

TABLE 1
Result of Matching Using Stetson’s Routine on Data Shown in Figs. 1
and 2

List A List B
1 1
2 2
3 2
4 4
5 5
6 6
7 i
9 8
10 9
11 10
12 11
Estimated  aransformation: X,=—543164+0.991x,—0.0002y,. y,=

—61.3214—@.001 1x,+0.9988y,.

TABLE 2
Results of Feature-Based Algorithm om Point Lists Shown in Figs. 1
and 2

List A List B Confidence
1 1 3
2 2 2
3 3 1
4 4 2
5 5 1
6 6 1
7/ 7l 2
8 32 3
9 46 4
10 9 2
11 10 3}
12 11 4
13 12 2
14 25 4
15 15 1
16 16 1
17 19 1
18 20 1
19 18 1
20 25 4
21 292 2
22 64 4
23 26 2
24 23 1
25 24 3
26 25 1
27 50 4
28 27 1
29 64 4
30 31 3
8i] 32 3
32 28 2
33 29 3
34 66 3
35 32 1
36 34 1
37 50 4
38 25 5
30 33 2
40 39 2
41 37 1
42 38 1
43 13 4
44 35 3
45 25 3
46 61 3
47 40 2
48 46 2
49 44 1
50 45 1
Sil 41 2
52 45 10
53 48 2
54 42 2
55 50 1
56 Sitl 2
57 54 1
58 52 2
59 53 3
60 35 1
61 57 3
62 50 4
63 61 2
64 58 1
65 62 1
66 59 7

Note: Confidence high-to-low=1 to 10. Translation vector which takes
first list points into second: —5.600, —61.83.
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FIG. 3—A point set, to bie compared with Fig. 4.

both translation values are a mesult of particular definitions
(ours is a particular median walue). Furthermore, the pre-
cise definitions of both translaitions are not inherently cou-
pled to the matching algorithum, and could be replaced by
alternative definitions.

Figures 3 and 4 were derived from a figure in Groth
(1986). A digitized photographic image provided the stars
in one set, and the points in the other set were culled from
a catalog. Eighteen points in Fig. 3 correspond exactly with
points in Fig. 4. The results obrtained are shown in Table 3.
Note how point 1 from the first point set (Fig. 3) is
mapped correctly onto point I in the second point set (Fig.
4), but with relatively unfavoirable confidence. The “world
views” of 1 in the two point sets are clearly confused by
neighboring points. Note that all high-confidence matches
between these two point sets (i.e., matches with confidence
=1, 2, or 3) are correct. We only seek a number of such
high-quality matches in order to define the relationship
between the two point sets.

Figures 5 and 6 show two point sets to be matched (data
courtesy of S. Ortolani). A magnitude limit of 14.0 yielded
the point sets shown in Figs. 7 and 8. The magnitude of
14.0 is arbitrary, with the sole requirement that around 100
points (a compromise between many points, leading to a

Catalog star positions [Groth.2]
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FiG. 4—A point set, to be compared with Fig. 3.
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TABLE 3
Results of Feature-Based Algorithm on Point Sets Shown in Figs. 3
and 4

List A List B Confidence
1 1 5
2 2 2
3 3 2
4 4 2
5 5 2
6 6 5
7 7 3
8 8 2
9 9 3
10 10 1
11 11 2
12 112 2
13 13 1
14 14 2
15 1S5 2
16 16 S
17 b7 2
18 18 2
19 10 5
20 10 i
21 10 5
22 10 Tk
23 24 8
244 24 4
25 16 10

Note: Confiidence high-to-low=1 to 10. Translation vector which takes
first list poimts into second: 0.0, 0.0.

robust sofution, versus computational expense) should re-
sult in eitlher list. Results for the matching of the latter two
point sets is shown in Table 4.

Figure 8 was rotated by 25° clockwise: see Fig. 9. A
matching between Figs. 7 and 9 therefore used the poten-
tial of owur algorithm for handling rotation. One result,
related to user constraining of what rotation angles were to
be searchied, is shown in Table 5.

Using the transformation yielded by the feature-based
algorithne on magnitude-limited point sets, the full match-
ing of all points shown in Figs. 5 and 6 was carried out. We
use a rough measure of acceptable correspondences as a

Star positions [Ortolani.1]

100 200 300 400  S00. 600

0

-100

(o] 50 100 150 200 250 300 350
X

FIG. 5—A point set, to be compared with Fig. 6.
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Star positions [Ortolani.2]
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F1G. 6—A point set, to be compared with Fig, 5.

Star positions [Ortolani.1], magnitude <= 14.0.
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FIG. 7—A magnitude-limited subset of the point set i Fig. 5; to be
compared with Fig. 8.

Star positions [Ortolani.2], magnitude <= 14.0.
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FIG. 8—A magnitude-limited subset of the point set im Fig. 6; to be
compared with Fig,. 7.

TABLE 4
Results of Feature-Based Algoritthm (First 10 Points Only) on Point Sets
Shown in Figs. 7 and 8

List A List B Confidence
1 50 4
2 54 2
3 16 2
4 57 1
5 59 1
6 111 D
7 4 1
8 61 1
9 22 1

10 65 1

Note: Confidence high-to-low=1 to 10. Translation vector which takes
first list points into second: —1.21, 0.28.

matched distance of less than 1.0. Using this measure, we
find that 1685 points are muatched from 1883 points in Fig.
5 and 2552 points in Fig. 6.

Sample timings of the method implemented are as fol-
lows. Feature-based matching for about 100 points in both
point sets, without rotatiom, requires about 25 s CPU time
on a SPARCstation 2. For rotation, about 14 s per degree
checked out is required. Giiven the rotation angle and the
translation, a full matchimg of the data shown in Figs. 5
and 6 (comprising about 2000 points in the two point sets)
takes about 18 s CPU time on a SPARCstation 2. In this
latter case, a brute-fore, unintelligent best-match algorithm
[i.e., O(n?)] was implememted.

A range of cleverer apprioaches for best-match searching
in two dimensions (some of which are reviewed in Chap. 2
of Murtagh 1985) would considerably speed up this phase
of the processing. In fact, it is well known that (perhaps
surprisingly) a nearest-neiighbor can be obtained in con-
stant expected time (i.e., independent of the sizes of the
point sets: see Bentley et all. 1980). It is also probably the
case that the efficiency of the feature-based phase of the
processing could be studied, and speedups affected.

5. DISCUSSION

We have presented an efficient algorithm for point-pat-
tern matching, and demomstrated its success in handling

Data set [Ortolani.2] rotated 25 degrees clockwise.
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FI1G. 9—A —25°-rotated version of Fig. 8, to be compared with Fig. 7.



TABLE 5
Results of Feature-Based Algorithm (First 10 Points Only) on Point Sets
Shown in Figs. 7 and 9

List A List B Confidence
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4
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65
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Note: Confidence high-to-low=1 to 10. Rotation angle of second point set
vis a vis the first: 335°.

Remark: results are shown for the case where angle 335° alone was
specified. Slightly different confidence factors would result from the use of
other intervals of angles. One would also need to note in such cases what
angle a confidence factor referred to. See text for further operational
details. Translation vector which takes first Bist points into second: —1.21,
0.28.

invariance of the following types: translation, scaling, per-
turbation, random insertions and deletions, and rotation.
Further enhancement of the algorithm could handle reflec-
tion in an axis.

Within the framework of the approach described, a
number of possibilities for further fine tuning have been
noted. It would be interesting to investigate the relation-
ship between the definition of a “weorld view” and spherical
factor analysis, a little used technique which was explored
in an 80-page article by Domenges and Volle (1979).

The algorithm described in this paper has considerably
better computational complexity characteristics, and/or
applicability properties, compared %o algorithms which are
currently in use as auxiliary tools in the area of two-dimen-
sional photometry. The procedure is robust, in terms of
positional coordinates, and in terms of magnitude (when
this is used). Specific breakdown points have yet to be
investigated.
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Triangle-based mapping (the work of Groth and Stet-
son discussed above) is based on differing presuppositions
to those used in this article. The approach we have de-
scribed has been found to achieve a matching of adequate
quality in an efficient and robust manner.

Motivation for the approach described here arose from
discussions with the authors, whose data sets are used
(with thanks} in the figures. I am also grateful to an anom-
ymous referee for suggesting various improvements in the

paper.
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