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Hierarchic Clustering of 3D Galaxy Distributions
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Data

• Sloan Digital Sky Survey data

• RA, Dec, redshift value, reliability indicator

• 345109 galaxies in right ascension and declination, photometric redshift

• In this work we used the low RA, galaxy plane area.
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Hierarchic Clustering

Labeled, ranked dendrogram on 8 terminal nodes. Branches labeled 0 and 1.
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Hierarchic Clustering: Metric =⇒ Ultrametric

• Hierarchical agglomeration onn observation vectors,i ∈ I

• Series of1, 2, . . . , n − 1 pairwise agglomerations of observations or clusters

• HierarchyH = {q|q ∈ 2I} such that (i)I ∈ H, (ii) i ∈ H ∀i, and (iii) for each

q ∈ H, q′ ∈ H : q ∩ q′ �= ∅ =⇒ q ⊂ q′ or q′ ⊂ q.

• Indexed hierarchy is the pair(H, ν) where the positive function defined onH,

i.e.,ν : H → IR+, satisfies:ν(i) = 0 if i ∈ H is a singleton; and (ii)

q ⊂ q′ =⇒ ν(q) < ν(q′). Functionν is the agglomeration level.

• Takeq ⊂ q′, let q ⊂ q′′ andq′ ⊂ q′′, and letq′′ be the lowest level cluster for

which this is true. Then if we defineD(q, q′) = ν(q′′), D is an ultrametric.
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Ultrametric Spaces and Properties

• Let (E, d) be a metric space, i.e. a setE and a positive function

E × E −→ IR+ satisfying

1. d(x, y) = d(y, x)

2. d(x, y) = 0 iff x = y

3. d(x, z) ≤ d(x, y) + d(y, z)

A space is ultrametric if in addition we haved(x, z) ≤ max(d(x, y), d(y, z))

• A metric space(E, d) is ultrametric iff all its triangles are isosceles, with the

length of the base being less than or equal to that of the sides.

• Each point of a circle inE is its center. Each ball in an ultrametric space is both

open and closed.

• Two non-disjoint balls are concentric.
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P-adic Coding

• For the dendrogram shown in we develop the following p-adic encoding for

p = 2 of terminal nodes, traversing a path from the root.

• x1 = 0 · 27 + 0 · 25 + 0 · 22 + 0 · 21;

• x2 = 0 · 27 + 0 · 25 + 0 · 22 + 1 · 21;

• x4 = 0 · 27 + 1 · 25 + 0 · 24 + 0 · 23;

• x6 = 0 · 27 + 1 · 25 + 1 · 24.

• The decimal equivalents of this p-adic representation of terminal nodes work

out asx1, x2, . . . x8 = 0, 2, 4, 32, 40, 48, 128, 192.

• A p-adic encoding forxi is given by
∑n−1

1
akpk whereak ∈ {0, 1} and

pk = 2k.
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P-adic (Algebraic) = Ultrametric (Topology)

• Various terms are used interchangeably for analysis in and over such fields such

as p-adic, ultrametric, non-Archimedean, and isosceles.

• The natural geometric ordering of metric valuations is on the real line, whereas

in the ultrametric case the natural ordering is a hierarchical tree.

• Ostrowski’s theorem: Each non-trivial valuation on the field of the rational

numbers is equivalent either to the absolute value function or to some p-adic

valuation

• Alternatively: Up to equivalence, the only norms on the rationals are the p-adic

norm and the usual norm given by the absolute value.
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Practical Interest of Ultrametricity

• Hierarchies arise naturally in language syntax, and (it has been claimed) in

financial markets.

• Rammal et al.: Ultrametricity is a natural property of high-dimensional spaces,

and ultrametricity emerges as a consequence of randomness and of the law of

large numbers.

• Again Rammal et al. and recent work of ours: Sparsely coded data tend to be

ultrametric. Examples include: the use of complete disjunctive forms of coding

in correspondence analysis; and categorical data coding in genomics and

proteomics, speech, and other fields.

• Ultrametricity is considered to hold at low Planck scales, and in superstrings

(Brekke and Freund, Phys. Rep., 233, 1–66, 1993).

• Also to be valid for optimization spaces.
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Testing for Ultrametricity

• Rammal et al.: determine the subdominant ultrametric (aka single link

hierarchic clustering).

• Interesting phase space effects for increase in dimensionality.

• However the subdominant ultrametric gives rise to pathologies.

• E.g. “friends of friends” chaining effect:d(x, y) ≤ r0, d(y, z) ≤ r0 then

d(x, z) = 2r0 − ε for arbitrarily smallε. Henced(x, z) can be anomalously

large.
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Lerman’s H-classifiabilty

• A basic unifying framework for pairs of objects, and the distance valuation on

them, is that of abinary relation.

• On a setE, a binary relation is apreorder if it is reflexive and transitive;

• it is anequivalence relation if the binary relation is reflexive, transitive and

symmetric;

• and it is anorder if the binary relation is reflexive, transitive, and

anti-symmetric.
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Lerman’s H-classifiabilty

• Let F denote the set of pairs of distinct units inE. A distance defines a total

preorder on F:

∀{(x, y), (z, t)} ∈ F : (x, y) ≤ (z, t) ⇐⇒ d(x, y) ≤ d(z, t)

• A preorder is called ultrametric if:

∀x, y, z ∈ E : ρ(x, y) ≤ r andρ(y, z) ≤ r =⇒ ρ(x, z) ≤ r

wherer is a given integer andρ(x, y) denotes the rank of pair(x, y) for ω̄.

• A necessary and sufficient condition for a distance onE to be ultrametric is that

the associated preorder (onE × E, or alternatively preordonnance onE) is

ultrametric.
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Lerman’s H-classifiabilty

• We move on now to define Lerman’s H-classifiability index, which measures

how ultrametric a given metric is.

• Let M(x, y, z) be the median pair among{(x, y), (y, z), (x, z)} and let

S(x, y, z) be the highest ranked pair among this triplet.J is the set of all such

triplets ofE.

• Mappingτ of all tripletsJ into the open interval of all pairsF for the given

preorderω:

τ : J −→]M(x, y, z), S(x, y, z)[

• Given a triplet{x, y, z} for which (x, y) ≤ (y, z) ≤ (x, z), for preorderω, the

interval]M(x, y, z), S(x, y, z)[ is empty ifω is ultrametric. Relative to such a

triplet, the preorderω is “less ultrametric” to the extent that the cardinal of

]M(x, y, z), S(x, y, z)[, defined onω, is large.

• H(ω) =
∑

J
|]M(x, y, z), S(x, y, z)[|/(|F | − 3)|J |
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Lerman’s H-classifiabilty

• Data sets that are “more classifiable” in an intuitive way, i.e. they contain

“sporadic islands” of more dense regions of points – a prime example is Fisher’s

iris data contrasted with 150 uniformly distributed values inIR4 – such data sets

have a smaller value ofH(ω). For Fisher’s data we findH(ω) = 0.0899,

whereas for 150 uniformly distributed points in a 4-dimensional hypercube, we

find H(ω) = 0.1835.

• Extensive tests carried out have shown that uniform data has values around 0.18

– 0.21. Whereas with more sparsely coded data, etc., one finds values around

0.1 – 0.14.
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Lerman’s H-classifiabilty

• We took 3D cylanders defined by RA and Dec within a tight radius of a position,

to limit the number of galaxies studied at any given time to around 500.

• We used data in (lower left block in Sloan data) – low RA, near galactic plane.

• Then we used 3D uniformly distributed data to see how different the Lerman

index would be.

• For Sloan data: 0.149837, 0.115096, 0.148676.

• For uniform data: 0.187662, 0.179590, 0.171903.

• Numbers in each case: 589, 554, 715.
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Conclusions and Critique

• The Sloan data came out as more ultrametric in all cases, compared to

uniformly distributed 3D values.

• But a Euclidean distance was used for determining the Lerman index.

• Also the cylandrical volume used in Sloan space may have biased the results (in

view of the redshift value).

• Future work: replace the cylander with a cone, and study replacement for the

Euclidean distance.


