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Sloan Digital Sky Survey data

RA, Dec, redshift value, reliability indicator

345109 galaxies in right ascension and declination, photometric redshift

In this work we used the low RA, galaxy plane area.
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Hierarchic Clustering I

Labeled, ranked dendrogram on 8 terminal nodes. Branches labeled 0 and 1.
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‘Hierarchic Clustering: Metric = Ultrametric I

Hierarchical agglomeration amobservation vectors,c [
Series ofl, 2, ...,n — 1 pairwise agglomerations of observations or clusters

HierarchyH = {q|q € 2’} such that (i)f € H, (ii) i € H Vi, and (iii) for each
geH,gd €eH:qng #0=qCq org Cq.

Indexed hierarchy is the pai#, ) where the positive function defined @h,
i.e.,v: H— IR", satisfiesv(i) = 0if i € H is a singleton; and (ii)

q C ¢ = v(q) < v(¢"). Functionv is the agglomeration level.

Takeq C ¢', letq C ¢" andq’ C ¢”, and letg” be the lowest level cluster for
which this is true. Then if we definB(q, ¢') = v(¢"’), D is an ultrametric.
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Ultrametric Spaces and Propertiei

e Let (F,d) be a metric space, i.e. a S8tand a positive function
E x E — IR, satisfying

1. d(z,y) = d(y, z)

2. d(xz,y) =0iff x =y

3. d(x,z) <d(xz,y)+ d(y, z)

A space is ultrametric if in addition we hav¢z, z) < max(d(z,y), d(y, z))

e A metric spac€ F, d) is ultrametric iff all its triangles are isosceles, with the
length of the base being less than or equal to that of the sides.

e Each point of a circle IrE is its center. Each ball in an ultrametric space is bof
open and closed.

\o Two non-disjoint balls are concentric. /
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P-adic Coding.

For the dendrogram shown in we develop the following p-adic encoding for
p = 2 of terminal nodes, traversing a path from the root.

21 =0-2"4+0-2°4+0-2>40-2%
22=0-2"40-2°+0-22 +1-2%
24 =0-2"T41-2°40-2*40-2%
e =0-2"+1-2°+1.2%

The decimal equivalents of this p-adic representation of terminal nodes work
out asri, xs,...xs = 0,2,4,32, 40,48, 128, 192.

A p-adic encoding for; is given byZ?_1 arpr Whereay, € {0,1} and

pr = 2". /
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‘ P-adic (Algebraic) = Ultrametric (TopolOgy)I

e Various terms are used interchangeably for analysis in and over such fields guch
as p-adic, ultrametric, non-Archimedean, and isosceles.

e The natural geometric ordering of metric valuations is on the real line, whergas
in the ultrametric case the natural ordering is a hierarchical tree.

e Ostrowski’s theorem: Each non-trivial valuation on the field of the rational
numbers is equivalent either to the absolute value function or to some p-adi¢
valuation

e Alternatively: Up to equivalence, the only norms on the rationals are the p-aglic
norm and the usual norm given by the absolute value.

- /
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Practical Interest of Ultrametricity I

Hierarchies arise naturally in language syntax, and (it has been claimed) in
financial markets.

Rammal et al.: Ultrametricity is a natural property of high-dimensional space
and ultrametricity emerges as a consequence of randomness and of the law
large numbers.

Again Rammal et al. and recent work of ours: Sparsely coded data tend to [
ultrametric. Examples include: the use of complete disjunctive forms of codi
In correspondence analysis; and categorical data coding in genomics and
proteomics, speech, and other fields.

Ultrametricity is considered to hold at low Planck scales, and in superstrings
(Brekke and Freund, Phys. Rep., 233, 1-66, 1993).
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Also to be valid for optimization spaces. /
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Testing for Ultrametricity I

Rammal et al.: determine the subdominant ultrametric (aka single link
hierarchic clustering).

Interesting phase space effects for increase in dimensionality.
However the subdominant ultrametric gives rise to pathologies.

E.g. “friends of friends” chaining effecti(x, y) < ro,d(y, z) < ro then

d(x,z) = 2ro — e for arbitrarily smalle. Henced(z, z) can be anomalously

large.

/
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‘ Lerman’s H-classifiabilty I

A basic unifying framework for pairs of objects, and the distance valuation ol
them, is that of dinary relation.

On a setF, a binary relation is @reorder if it is reflexive and transitive;

it is anequivalence relation if the binary relation is reflexive, transitive and
symmettric;

and it is anorder if the binary relation is reflexive, transitive, and
anti-symmetric.

/

12



lierarchic Clustering of 3D Galaxy Distributions

-

\_

‘ Lerman’s H-classifiabilty I

e Let F' denote the set of pairs of distinct unitsin A distance defines a total

preorder on F:

V{(z,y),(z,t)} € F: (z,y) < (2,t) <= d(z,y) < d(z,1)

e A preorder is called ultrametric if:

Vz,y,z € E: p(z,y) <randp(y,z) <r = p(z,z) <r

wherer is a given integer angd(x, y) denotes the rank of pafr, y) for .

e A necessary and sufficient condition for a distancetbto be ultrametric is that

the associated preorder (@¢hx E, or alternatively preordonnance @) is
ultrametric.

~

/
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‘ Lerman’s H-classifiabilty I

We move on now to define Lerman’s H-classifiability index, which measures
how ultrametric a given metric is.

Let M (z,y, z) be the median pair amorddx, y), (v, z), (x, z)} and let
S(z,y, z) be the highest ranked pair among this tripléts the set of all such
triplets of .

Mappingr of all triplets J into the open interval of all pairg’ for the given
preorderw:
7:J —|M(z,y,2),S(x,y,2)|

Given a triplet{x, y, z} for which (z,y) < (y, 2) < («, 2), for preordew, the
interval | M (x, vy, z), S(x,y, z)| Is empty ifw is ultrametric. Relative to such a
triplet, the preordetw is “less ultrametric” to the extent that the cardinal of
|M(x,y,2),S(x,y, z)[, defined onw, is large.

H(w) =3, [1M(z,y,2), S(z,9,2)[l/ (| F] = 3)|J] -

14
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e Data sets that are “more classifiable” in an intuitive way, i.e. they contain

~

‘ Lerman’s H-classifiabilty I

“sporadic islands” of more dense regions of points — a prime example is Fisher’s
iris data contrasted with 150 uniformly distributed valuedif— such data sets
have a smaller value dff (w). For Fisher’s data we find/ (w) = 0.0899,

whereas for 150 uniformly distributed points in a 4-dimensional hypercube, e
find H (w) = 0.1835.

Extensive tests carried out have shown that uniform data has values around|0.18
—0.21. Whereas with more sparsely coded data, etc., one finds values aroupd

0.1-0.14.
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‘ Lerman’s H-classifiabilty I

We took 3D cylanders defined by RA and Dec within a tight radius of a positipn,
to limit the number of galaxies studied at any given time to around 500.

We used data in (lower left block in Sloan data) — low RA, near galactic plang.

Then we used 3D uniformly distributed data to see how different the Lerman
index would be.

For Sloan data: 0.149837, 0.115096, 0.148676.
For uniform data: 0.187662, 0.179590, 0.171903.
Numbers in each case: 589, 554, 715.

16
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Conclusions and Critique.

e The Sloan data came out as more ultrametric in all cases, compared to
uniformly distributed 3D values.

e But a Euclidean distance was used for determining the Lerman index.

e Also the cylandrical volume used in Sloan space may have biased the results (in
view of the redshift value).

e Future work: replace the cylander with a cone, and study replacement for thg
Euclidean distance.

- /




