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Foreword

Chapters 1 to 5 started life as lecture notes of a course given by F. Murtagh in
the Joint Research Centre, Ispra, Italy, in 1984. The layout of the chapters, as
“Mathematical Description”, “Examples and Bibliography”, and “Software and
Sample Implementation”, is something we owe to Dr Alessandro Colombo who
proposed a format along these lines. The course notes, in book format, were
published as a JRC Ispra internal report.

There followed in 1987 the book Multivariate Data Analysis, written by F.
Murtagh and A. Heck, and published by Kluwer Academic Publishers, Dor-
drecht, in hardback and softback. This book covered chapters 1 to 6 of the
present text.

In the current version, Chapter 4 has been extended considerably. and the
figures have been redone throughout. In Chapters 2 and 3, new software imple-
mentations are included as Java applications. Chapter 7 and the Appendix are
new. Chapter 8 has seen various additions.

It is our objective to include Java code for the other chapters, and to remove
the Fortran programs (which will remain available on the web). The current
Java application codes will be enhanced. An index will be added. Some harmo-
nization of the notation used in Appendix A is called for.

Case study 2 is based on the work described in S. Mukherjee, E.D. Feigelson,
G.J. Babu, F. Murtagh, C. Fraley and A. Raftery, “Three types of gamma ray
bursts”, The Astrophysical Journal, 508, 314-327, 1998.

We foresee also the possibility to add more material relating to input data
coding, especially in the context of correspondence analysis. This will lead natu-
rally to fuzzy data analysis and possibility theory, which are especially valuable
for the handling of imprecise data. We will exemplify this with examples from
articles on such decision support methods in the context of observatory support
operations.

Among other topics which could be considered are the clustering of massive
data sets (see F. Murtagh, “Clustering in massive data sets”, in J. Abello, P.M.
Pardalos and M.G.C. Reisende, Eds., Handbook of Massive Data Sets, Kluwer,
2000, forthcoming), to include “on-line” algorithms used in the Sloan Digital
Sky Survey, for instance; and noise filtering methods, in particular those based
on multiresolution methods. See J.L. Starck, F. Murtagh and A. Bijaoui, Image
and Data Analysis: The Multiscale Approach, Cambridge University Press,
1998. See also J.L. Starck, F. Murtagh, P. Querre and F. Bonnarel, “Entropy
and astronomical data analysis”, recently (late 2000) submitted to Astronomy
and Astrophysics.
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Chapter 1

Data Coding and Initial
Treatment

1.1 The Problem

Data Analysis has different connotations for different researchers. It is however
definitely part of the chain of reduction and exploitation of data, located some-
where between, let us say, the taking of observations and the eventual, published
article.

The versatility and range of possible applications of multivariate data anal-
ysis make it important to be understood by astronomical researchers. Its
applicability—boundaries — or equally, the requirements for input data for such
algorithms — should also be appreciated.

In the following chapters, the techniques to be studied are

Principal Components Analysis: which focusses on inter—object correlations,
reduces their (parameter—space) dimensionality, and allows planar graphic
representations of the data;

Cluster Analysis: which is the application of automatic grouping procedures;
Discriminant Analysis: which classifies items into pre—defined groups.

A number of other, related methods will also be studied.

The data array to be analysed crosses objects (e.g. ultraviolet spectra, spiral
galaxies or stellar chemical abundances) with variables or parameters. The
former are usually taken as the rows of the array, and the latter as the columns.
The choice of parameters to use for the study of a particular set of objects is
of vital importance, but concrete guidelines cannot unfortunately be given in
advance. The results of the analysis will depend in large measure on the choice
of parameters (and may indeed be used to judge the relevance of the set of
parameters chosen).

The following remarks should be borne in mind, however, in choosing pa-
rameters to suitably characterise the objects under investigation.

e As far as possible the parameters should be homogeneous: in multivariate
data analysis, we do not wish to find differences in the objects being
explained purely by inhomogeneities in the parameters used.
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e The parameters should allow for a comprehensive description of the ob-
jects; i.e. express as many aspects of the objects as possible.

e They, and the objects, should be chosen so that there is no bias in what
is being studied (Pfleiderer, 1983). There should also be sufficient objects
to constitute a reasonable sample (as a very general rule, a few dozen).

e As far as possible, missing data should be avoided.

Later in this chapter, we will describe the selection of parameters in two
short case—studies.

Unlike classical, inferential statistics, there is rarely need for distributional
assumptions in the methods to be studied. Multivariate methods have descrip-
tion of the data as their aim, — and hence the drawing of conclusions. Less
precision in the possible conclusions of multivariate methods is balanced by
the greater range of situations where they can be applied. Nonetheless, some
knowledge of classical statistics is a sine qua non for successful analysis of data.
Wall (1979) or Wetherill (1972), among many other texts, provide introductory
material in this area.

The object—parameter dependencies can take many forms. Most suitable
from the point of view of many of the algorithms to be discussed in subsequent
chapters is quantitative data, i.e. real valued data, positive or negative, defined
relative to some zero point. Another form of data is qualitative or categorical,
i.e. the object—parameter relation falls into one of a number of categories; in
its most simple form, this is a yes/no dependency indicating the presence or
absence of the parameter. The coding of a categorical variable or parameter
may take the general form of values “a”, “b”, etc. for the different categories, or
“17, “2” etc. (where in the latter case, the values have “qualitative” significance
only). A final form of data to be mentioned here is ordinal data where a rank
characterises the object on the parameter.

1.2 Mathematical Description

1.2.1 Introduction

In the great majority of multivariate data analysis methods, the notion of dis-
tance (or similarity) is central. In clustering, objects are clustered on the basis
of their mutual similarity, for instance, and in Principal Components Analysis
(PCA) the points are considered as vectors in a metric space (i.e. a space with
a distance defined).

A very large number of coefficients for measuring similarity or distance have
at one time or another been proposed. We will not attempt an inventory in the
following sections but will instead deal with commonly used coefficients.

If the data to be analysed is of conveniently small size, then a visual scan
of pairwise distances can reveal interesting features. It could be asserted that
descriptive procedures such as PCA and clustering provide means of exploring
such distances when it becomes impractical to do it “manually”.

Some of the problems which arise in deciding on a suitable distance are as
follows. If the data to be analysed is all of one type, a suitable distance can be
chosen without undue difficulty. If the values on different coordinates are quite
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different — as is more often the case — some scaling of the data will be required
before using a distance. Equally, we may view the use of a distance on scaled
data as the definition of another, new distance. More problemsome is the case
of data which is of mixed type (e.g. quantitative, categorical, ordinal values).
Here, it may be possible to define a distance which will allow all coordinates to
be simultaneously considered. It may be recommendable, though, to redefine
certain coordinate variables (e.g. to consider ordinal values as quantitative or
real variables). As a general rule, it is usually best to attempt to keep “like
with like”. A final problem area relates to missing coordinate values: as far as
possible care should be taken in the initial data collection phase to ensure that
all values are present.

1.2.2 Distances

Proximity between any pair of items will be defined by distance, dissimilarity
or similarity. Distance is simply a more restrictive dissimilarity, — it satisfies
certain axioms listed below. Both distances and dissimilarities measure iden-
tical items by a zero value, and by increasingly large (positive) values as the
proximity of the items decreases. Similarities are mathematical functions which
treat pairs of items from the other perspective: large values indicate large prox-
imity, while small (positive) or zero values indicate little or no proximity. The
mathematician is happiest when dealing with distances: an established body
of theory is immediately available, and many of the methods to be studied in
subsequent chapters work on distances.

The most commonly used distance for quantitative (or continuous) data is
the Euclidean distance. If

a={a;:j=12,..,m}

and
b={b;:j=12,..,m}

are two real-valued vectors then the unweighted squared Euclidean distance is
given by

@*(a,b) =Y (a; —b;)* = (a—b)'(a—b)
J
where a and b are taken as column vectors, and ' denotes transpose,

= |lall* + [Ib]* — 2a'b

where ||.|| is the norm, or distance from the origin.
The Euclidean, along with all distances, satisfies the following properties:

Symmetry: d(a,b) = d(b,a).
Positive semi-definiteness: d(a,b) > 0, if a # b;d(a,b) =0, if a = 0.

Triangular inequality: d(a,b) < d(a,c) + d(c,b).
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The triangular inequality in the Euclidean plane is simply the assertion that
going from a to b cannot be shortened by going first to another point ¢; equality
corresponds to point ¢ being located on the line connecting ¢ and b. Some
further aspects of the Euclidean distance are discussed in Chapter 2.

The Hamming distance is an alternative to the Euclidean distance:

d(a,b) = > | a; —b; |
j
where | . | is absolute value.

When binary data is being studied (i.e. categorical data with presence/absence
values for each object, on each parameter) mutual possession of a property
contributes 0 to this distance, mutual non-possession also contributes 0, and
presence/absence contributes 1.

The Hamming and Euclidean distances are both members of a general class
of distances termed the Minkowski metrics:

dy(a,b) = E/Z la; —bj [P p>1.
J

When p = 2 we have the Euclidean distance; p = 1 gives the Hamming
distance; and p = oo reduces to

doo(a,b) = maz; | aj —b; |

which is the “maximum coordinate” or Chebyshev distance. These three are
the most commonly used Minkowski distances. The corresponding norms, i.e.

lall, = dp(a,0)

where 0 is the origin, are referred to as the L; , Ly , and Ly, norms.

Since these distances are symmetric, it is not necessary to store all n interpair
distances for n objects: n(n — 1)/2 suffice.

With a suitable coding, the Euclidean, Hamming or other distances may be
used in a wide variety of circumstances. Consider in Figure 1.1 part of a set of
records from a Quasar catalogue. Part of two records, z and y, are shown. In
order to carry out a comparison of such records, we can as a preliminary recode
each variable, as shown. The Hamming and Euclidean distances are both then

dz,y) =0+0+0+0+1+1+1=3

in this case. The breakdown of Seyfert spectrum type in this example is easier to
accomplish than the breakdown of positional coordinates (it would be necessary
to astutely break up the angle values into useful, but ad-hoc, categories). User
choice is required in defining such a disjunctive form of coding. In the case of
quantitative variables this coding may be especially useful when one is in the
presence of widely varying values: specifying a set of categories may make the
distances less vulnerable to undesirable fluctuations.

The possible preponderance of certain variables in, for example, a Euclidean
distance leads to the need for a scaling of the variables, i.e. for their centring
(zero mean), normalization (unit variance), or standardization (zero mean and
unit standard deviation). If a;; is the j' coordinate of vector a; (i.e. the ijt"
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Record x:  S1,18.2, X
Record y:  S1, 6.7, —
Seyfert type spectrum Integrated magnitude X-ray data?
S1 S2 S3 — <10 > 10 Yes
x| 1 0 O 0 0 1 1
yl 1 0 0 0 1 0 0

Figure 1.1: Two records (x and y) with three variables (Seyfert type, magnitude,
X-ray emission) showing disjunctive coding.

table entry), a; is the mean value on coordinate (variable) j, and o; is the
standard deviation of variable j, then we standardize a;; by transforming it to

(aij —a;)/o;

where
n
aj: E aij/n
i=1

n
o} =Y (aij — a;)*/n
i=1
and n is the number of rows in the given table.

Standardization, defined in this way, is widely used, but nothing prevents
some alternative scaling being decided on: for instance we could divide each
value in the data matrix by the row mean, which has the subsequent effect of
giving a zero distance to row vectors each of whose elements are a constant
times the other. We may regard the resultant distance as a weighted Euclidean

distance of the following form:

dz(a,b) = Z(wlaj — wgbj)Q.
J
Missing values constitute a current research problem: the simplest option
is to delete rows or columns of the input data table in order to avoid these.
There is no clear answer as to how to estimate missing values. However a
dissimilarity, similar in form to a weighted Euclidean distance, may always be
used for quantitative data:

!

(aj — bj)?

d*(a,b) =

’
m
=1

SE

where m’ < m pairs of coordinates are simultaneously present for both a and
b.

1.2.3 Similarities and Dissimilarities

A dissimilarity may satisfy some of the properties of a distance but often the
triangular inequality is found to be the most difficult to satisfy.
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Similarities, just as distances or dissimilarities, are functions mapping pairs
of items (most often, vectors in a multidimensional space) into positive, real
values.

In the case of binary data (i.e. data representing by 0 and 1 whether or not
an object possesses a property), many similarity coefficients have been proposed.
A similarity, s;;, may be converted into a dissimilarity, d;;, when s.,q, is the
maximum similarity present, in the following way:

0ij = Smaz — Sij-

Similarity coefficients are often defined so that their resultant value will be
between 0 and 1. For example, the Jaccard coefficient is defined for binary
vectors a and b, and where N represents the counting operator, as

Njaj =bj=1) _
Nj(a; = 1) + Nj(bj = 1) — Nj(a; =b; = 1)

The numerator here reads: the number of times property j is simultaneously
present for objects a and b. This can be written in vector notation as

s(a,b) =

a'b
s(a,b) = a'a+bb—ab’
As an example, the Jaccard similarity coefficient of vectors (10001001111) and
(10101010111) is 5/(6 + 7 — 5) = 5/8.

In the case of mixed quantitative—qualitative data, a suitable similarity co-
efficient may be difficult to define. The Gower coefficient considers all binary,
other qualitative, and quantitative/ordinal coordinates in turn: for the binary,
the Jaccard coefficient is determined; for other qualitative, a 1 indicates the
same coordinate value, and a 0 indicates different coordinate values; and for the
jth quantitative or ordinal coordinate of objects a and b, we determine

__laj—b;|
maz; | a; —bj |’

The denominator is the maximum spread. It is seen that all contributions
to the Gower similarity coefficient are between 0 and 1. A similarity coefficient
with values between 0 and 1 can be obtained by

n181 + nase + n3ss
ni + n9 + ns

where ny coordinates are binary and s; is the Jaccard similarity obtained; no co-
ordinates are otherwise qualitative and s, is their contribution to the similarity
discussed above; and finally n3 coordinates are quantitative or ordinal.

For further discussion of similarities and distances, Anderberg (1973) or
Everitt (1980) may be consulted. For their relation to metric properties, Gower
and Legendre (1986) can be recommended.

We will conclude this section by pointing to a very different approach to
defining dissimilarity, which constitutes an interesting research direction. In the
case of spectral matching, without knowledge of calibration, a best fit between
any pair of spectra must first be obtained and on the basis of this a dissimilarity
defined. A technique from the Operations Research field, known as dynamic
programming, may be used for such optimal matching. Dynamic programming



1.3. EXAMPLES AND BIBLIOGRAPHY 7

offers a flexible approach for optimally matching two ordered sets of values.
Further reading is to be found in Kruskal (1983), Sankoff and Kruskal (1983)
and Hall and Dowling (1980).

1.3 Examples and Bibliography

1.3.1 Selection of Parameters

The annotated bibliographies of subsequent chapters may be referred to for
studies in a wide range of areas, and where details of data coding may be found.
Here, we will restrict ourselves to a few examples of the way in which parameter
selection is carried out.

1.3.2 Example 1: Star—Galaxy Separation

In the case of star—galaxy classification, following the scanning of digitised im-
ages, Kurtz (1983) lists the following parameters which have been used:

1. mean surface brightness;

2. maximum intensity, area;

maximum intensity, intensity gradient;

normalized density gradient;

areal profile;

radial profile;

maximum intensity, 2”¢ and 4t* order moments, ellipticity;

the fit of galaxy and star models;

© % N o otk W

contrast, versus smoothness ratio;

10. the fit of a Gaussian model,;

11. moment invariants;

12. standard deviation of brightness;

13. 2"? order moment;

14. inverse effective squared radius;

15. maximum intensity, intensity weighted radius;

16. 2"? and 3"? order moments, number of local maxima, maximum intensity.

References for all of these may be found in the cited work. Clearly there is
room for differing views on parameters to be chosen for what is essentially the
same problem! It is of course the case also that aspects such as the following will
help to orientate us towards a particular set of parameters in a particular case:
the quality of the data; the computational ease of measuring certain parameters;
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the relevance and importance of the parameters measured relative to the data
analysis output (e.g. the classification, or the planar graphics); similarly, the
importance of the parameters relative to theoretical models under investigation;
and in the case of very large sets of data, storage considerations may preclude
extravagance in the number of parameters used.

1.3.3 Example 2: Galaxy Morphology Classification

The generating of a galaxy equivalent of the Hertzsprung-Russell diagram for
stars, or the determining of a range of Hubble-type classes, using quantitative
data on the galaxies, is a slowly burgeoning research topic. The inherent dif-
ficulty of characterising spirals (especially when not face-on) has meant that
most work focusses on ellipticity in the galaxies under study. This points to an
inherent bias in the potential multivariate statistical procedures. The inherent
noisiness of the images (especially for faint objects) has additionally meant that
the parameters measured ought to be made as robust as is computationally fea-
sible. In the following, it will not be attempted to address problems of galaxy
photometry per se (see Davoust and Pence, 1982; Pence and Davoust, 1985),
but rather to draw some conclusions from recent (and ongoing) work which has
the above—mentioned objectives in view.

From the point of view of multivariate statistical algorithms, a reasonably
homogeneous set of parameters is required. Given this fact, and the available
literature on quantitative galaxy morphological classification, two approaches
to parameter selection appear to be strongly represented, albeit intermixed:

1. The luminosity profile along the major axis of the object is determined at
discrete intervals. This may be done by the fitting of elliptical contours,
followed by the integrating of light in elliptical annuli (Leféevre et al., 1986).
A similar approach is used for the comprehensive database, currently be-
ing built up for the European Southern Observatory galaxy survey (by
A. Lauberts). Noisiness and faintness require attention to robustness in
measurement: the radial profile may be determined taking into account
the assumption of a face—on optically—thin axisymmetric galaxy, and may
be further adjusted to yield values for circles of given radius (Watanabe
et al., 1982). Alternatively, isophotal contours may determine the discrete
radial values for which the profile is determined (Thonnat, 1985).

2. Specific morphology-related parameters may be derived instead of the
profile. The integrated magnitude within the limiting surface brightness
of 25 or 26 mag. arcsec”2 in the visual is popular (Takase et al., 1984;
Lefevre et al., 1986). The logarithmic diameter (D) is also supported by
Okamura (1985). It may be interesting to fit to galaxies under consider-
ation model bulges and disks using, respectively, ri or exponential laws
(Thonnat, 1985), in order to define further parameters. Some catering for
the asymmetry of spirals may be carried out by decomposing the object
into octants; furthermore the taking of a Fourier transform of the intensity
may indicate aspects of the spiral structure (Takase et al., 1984).

In the absence of specific requirements for the multivariate analysis, the
following remarks can be made.
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e The range of parameters to be used should be linked, if feasible, to the
further use to which they might be put (i.e. to underlying theoretical
aspects of interest).

e It appears that many parameters can be derived from a carefully—constructed
luminosity profile, rather than it being possible to derive a profile from
any given set of parameters. The utility of profiles would appear to be
thereby favoured in the long term in this field.

e The presence of both types of data in the database is of course not a
hindrance to analysis: however it is more useful if the analysis is carried
out on both types of data separately.

Parameter data may be analysed by clustering algorithms, by Principal Com-
ponents Analysis or by methods for Discriminant Analysis (all of which will be
studied in the following chapters). Profile data may be sampled at suitable in-
tervals and thus analysed also by the foregoing procedures. It may be more con-
venient in practice to create dissimilarities between profiles, and analyse these
dissimilarities: this may be done using clustering algorithms with dissimilarity
input.

1.3.4 Example 3: Interactive Visualization

Frequently the analyst must interact with the data. This means that one type
of display is made, followed by a different visualization of some subset of the
data. The term “exploratory data analysis” is most closely associated with the
name of Tukey (Princeton). Interactive statistics is another term used, and
this activity may be supported by computer software. A prime example is the S
language (or software environment) originating in ATT Bell Labs, and enhanced
as the S-Plus package by MathSoft Inc. (formerly StatSci Inc.). Figures 1.2, 1.3
and 1.4 were produced using S-Plus. Statistical graphics is used to mean much
the same thing.

To illustrate the types of visualizations which will be studied in greater depth
elsewhere in this book, we will take a small data set used in Capaciolli et al.
(1991). The authors collected data on 14 different galactic globular clusters,
all of which had been collected in earlier CCD (digital detector) photometry
studies. They studied a number of salient associations between variables. We
will do this based on global simultaneous views of the data, and briefly note
some aspects of these analyses.

A set of all pairwise plots is shown in Figure 1.2. We could label the points.
Not having done so means that correlations and clusters are essentially what we
will instead look for. Consider the plots of variables x and x_0: they are very
highly correlated, such that one or other of these variables is in fact redundant.
Consider x and Z_g: the relationship is less spectacular, but nonetheless very
correlated. This fact is discussed in Capaccioli et al. (1991). Outliers, to be
interpreted as anomalous observations or perhaps as separate classes, are to be
seen in quite a few of the plot panels.

Figure 1.3 shows a principal components analysis of the variables. This is
an optimal planar representation of the data (subject, of course, to what we
mean by optimality: in Chapter 2 we will define this). The variable [Fe/H]
is quite different from the others. This variable, metallicity, was discussed in
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Object trlx  Rge Zg  log(M/ ¢ [Fe/H] x  x0
years Kpc Kpc M)
M15 1.03e+8 104 4.5 5.95 2.54 -2.15 25 14
M68 2.59e+8 10.1 5.6 5.1 1.6 -2.09 20 1.0
M13 29le+8 89 46 5.82 1.35 -1.65 1.5 0.7
M3 3.22e+8 126 102 594 1.85 -1.66 1.5 0.8
M5 2.2le+8 6.6 5.5 5091 14 -14 1.5 0.7
M4 1.12e+8 6.8 0.6 5.15 1.7  -128 -05 -0.7
47 Tuc 1.02e+8 8.1 3.2 6.06 2.03 -0.71 0.2 -0.1
M30 1.18e+7 7.2 5.3 5.18 2.5 -2.19 1.0 0.7
NGC 6397 1.59e+7 6.9 0.5 4.77 1.63 -2.2 0.0 -0.2
M92 7.79e+7 9.8 44 5.62 1.7 -2.24 0.5 0.5
M12 3.26e+8 5.0 2.3 5.39 1.7 -1.61 -04 -04
NGC 6752 8.86e+7 59 1.8 5.33 1.59 -1.54 09 05
M10 1.50e+8 5.3 1.8 5.39 1.6 -1.6 05 04
M71 814e+7 74 0.3 498 1.5 -0.58 -04 -04

Table 1.1: Data: 14 globular clusters, 8 variables.

Capaccioli et al. (1991) and used as a basis for subdividing the globular clusters.
We could also view the latter in the principal plane and find, in that way, what
observations are most positively associated with the variable [Fe/H].

Another way to visualize the observations, if clustering is really what we
are interested in, is to directly cluster them. A hierarchical clustering provides
lots of classification-related information. Figure 1.4 shows such a classification
tree, or dendrogram. Two large clusters are evident, comprising the 6 globular
clusters to the left, and the 8 globular clusters to the right. Note how the
branches could be reversed. However what belongs in any given branch will
not change, subject to the particular clustering criterion being used. In Figure
1.4, a criterion seeking maximal cluster compactness (defined by within cluster
variances) is employed.

These methods are relatively powerful. They allow us to answer questions re-
lated to internal associations and correlations in our data. They provide answers
to degrees of redundancy and of “anomalicity”. They provide visualizations to
help us with communication of our conclusions to our clients or colleagues. They
are tools (algorithmic, software) which are easy to use, and which let the data
speak for themselves.

1.3.5 General References

1. M.R. Anderberg, Cluster Analysis for Applications, Academic Press, New
York, 1973.

2. R.A. Becker, J.M. Chambers and A.R. Wilks, The New S Language, Chap-
man and Hall, 1988.

3. M. Capaccioli, S. Ortolani and G. Piotto, “Empirical correlations between
globular cluster parameters and mass function morphology”, Astronomy
and Astrophysics, 244, 298-302, 1991.
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Chapter 2

Principal Components
Analysis

2.1 The Problem

We have seen in Chapter 1 how the n x m data array which is to be analysed
may be viewed immediately as a set of n row—vectors, or alternatively as a set
of m column—vectors. PCA seeks the best, followed by successively less good,
summarizations of this data. Cluster Analysis, as will be seen in Chapter 3, seeks
groupings of the objects or attributes. By focussing attention on particular
groupings, Cluster Analysis can furnish a more economic presentation of the
data. PCA (and other techniques, as will be seen in a later chapter) has this
same objective but a very different summarization of the data is aimed at.

In Figure 2.1a, three points are located in IR?. We can investigate this data
by means of the coordinates on the axes, taken separately. We might note, for
instance, that on axis 1 the points are fairly regularly laid out (with coordinates
1, 2 and 3), whereas on axis 2 it appears that the points with projections 4 and 5
are somewhat separated from the point with projection 2. In higher—dimensional
spaces we are limited to being easily able to visualize one—dimensional and two—
dimensional representations (axes and planes), although at the limit we can
construct a three—dimensional representation.

Given, for example, the array of 4 objects by 5 attributes,

73 4 1 6
34 7 2 0
17 3 -1 4

2 0 -6 4 1

the projections of the 4 objects onto the plane constituted by axes 1 and 3 is
simply

7 4
3 7
1 3
2 —6

Thus far, the projection of points onto axes or planes is a trivial operation.

17
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Array for Fig. 2.1 =

W N =
Ot N

Figure 2.1: Points and their projections onto axes.

PCA, however, first obtains better axes. Consider Figure 2.1b where a new axis
has been drawn as nearly as possible through all points. It is clear that if this
axis went precisely through all points, then a second axis would be redundant
in defining the locations of the points; i.e. the cloud of three points would be
seen to be one—dimensional.

PCA seeks the axis which the cloud of points are closest to (usually the
Euclidean distance defines closeness). This criterion will be seen below to be
identical to another criterion: that the projections of points on the axis sought
for be as elongated as possible. This second criterion is that the variance of the
projections be as great as possible.

If, in general, the points under examination are m—dimensional, it will be
very rare in practice to find that they approximately lie on a one—dimensional
surface (i.e. a line). A second best-fitting axis, orthogonal to the first already
found, will together constitute a best—fitting plane. Then a third best—fitting
axis, orthogonal to the two already obtained, will together constitute a best—
fitting three—dimensional subspace.

Let us take a few simple examples in two—dimensional space (Figure 2.2).
Consider the case where the points are centred (i.e. the origin is located at the
centre of gravity): this will usually be the case if the data are initially trans-
formed to bring it about (see the previous Chapter and Section 2.2.5 below).
We will seek the best—fitting axis, and then the next best—fitting axis. Figure
2.2a consists of just two points, which if centred must lie on a one—dimensional
axis. In Figure 2.2b, the points are arranged at the vertices of a triangle. The
vertical axis, here, accounts for the greatest variance, and the symmetry of the
problem necessitates the positioning of this axis as shown. In the examples of
Figure 2.2, the positive and negative orientations of the axes are arbitrary since
they are not integral to our objective in PCA.
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Figure 2.2: Some examples of PCA of centred clouds of points.
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Central to the results of a PCA are the coordinates of the points (i.e. their
projections) on the derived axes. These axes are listed in decreasing order
of importance, or best—fit. Planar representations can also be output: the
projections of points on the plane formed by the first and second new axes; then
the plane formed by the first and third new axes; and so on, in accordance with
user-request.

It is not always easy to remedy the difficulty of being unable to visualize
high—dimensional spaces. Care must be taken when examining projections, since
these may give a misleading view of interrelations among the points.

2.2 Mathematical Description

2.2.1 Introduction

The mathematical description of PCA which follows is important because other
techniques (e.g. Discriminant Analysis) may be viewed as variants on it. It is
one of the most straightforward geometric techniques, and is widely employed.
These facts make PCA the best geometric technique to start with, and the most
important to understand.

Section 2.2.2 will briefly deal with the basic notions of distance and projec-
tion to be used in subsequent sections. The Euclidean distance, in particular,
has previously been studied in Chapter 1. Although some background knowl-
edge of linear algebra is useful for the following sections, it is not absolutely
necessary.

Section 2.2.3 will present the basic PCA technique. It answers the following
questions:

e how is PCA formulated as a geometric problem ?

e having defined certain geometric criteria, how is PCA formulated as an
optimisation problem ?

e finally, how is PCA related to the eigen—decomposition of a matrix ?

Although a range of solution techniques for the eigenproblem are widely
implemented in packages and subroutine libraries, an intuitively simple iterative
solution technique is described later in Section 2.2.6.

Section 2.2.4 relates the use of PCA on the n (row) points in space R™
and the PCA of the m (column) points in space IR". Secondly, arising out of
this mathematical relationship, the use of PCA as a data reduction technique
is described. This section, then, answers the following questions:

e how is the PCA of an n x m matrix related to the PCA of the transposed
m X n matrix ?

e how may the new axes derived — the principal components — be said to
be linear combinations of the original axes ?

e how may PCA be understood as a series expansion ?

e in what sense does PCA provide a lower—dimensional approximation to
the original data ?
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In practice the variables on which the set of objects are characterised may
often have differing means (consider the case of n students and m examination
papers: the latter may be marked out of different totals, and furthermore it is
to be expected that different examiners will set different standards of rigour).
To circumvent this and similar difficulties, PCA is usually carried out on a
transformed data matrix. Section 2.2.5 describes this transformation.

As an aid to the memory in the mathematics of the following sections, it is
often convenient to note the dimensions of the vectors and matrices in use; it
is vital of course that consistency in dimensions be maintained (e.g. if uis a
vector in R™ of dimensions m x 1, then premultiplication by the n x m matrix
X will yield a vector Xu of dimensions n x 1).

2.2.2 Preliminaries — Scalar Product and Distance

This section defines a general Euclidean space. The usual Euclidean space is
defined by means of its scalar product

Xy =y'x
(where ' denotes transpose). From the definition of scalar product, we may
derive firstly the norm (here it is squared):

Ix[* =x"x

which is easily verified to be > 0 if x # 0 and = 0 otherwise; and secondly
distance (squared):

Ix=ylI"=x-y)'(x-y)

which is usually denoted by d?(z,y).
A general Euclidean space allows for non—orthogonal axes using the following
definitions:

Scalar product: x' My = y'Mx (M must be symmetric).

Norm (squared): ||x||3, = x'Mx (M must be positive definite so that the
norm is positive, or zero if x = 0).

Distance (squared): [|x —y|l3, = (x —y)'M(x —y).
M—orthogonality: x is M—orthogonal to y if X’ My = 0.

Unless otherwise specified, the usual Euclidean space associated with the
identity matrix is understood (i.e. M has ones on the main diagonal and zeros
elsewhere).

The projection of vector x onto axis u is

x'Mu
y =
[lall5,
i.e. the coordinate of the projection on the axis is x'Mu/||ul|,,. This becomes
x' Mu when the vector u is of unit length.

The cosine of the angle between vectors x and y in the usual Euclidean space
is X'y /||x||lly]l- (That is to say, we make use of the triangle whose vertices are
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the origin, the projection of x onto y, and vector x. The cosine of the angle
between x and y is then the coordinate of the projection of x onto y, divided
by the — hypotenuse — length of x). The correlation coefficient between two
vectors is then simply the cosine of the angle between them, when the vectors
have first been centred (i.e. x — g and y — g are used, where g is the overall
centre of gravity).

The notions of distance and of projection will be central in the description
of PCA (to be looked at next) and in the description of other geometric data
analytic techniques studied in subsequent chapters.

2.2.3 The Basic Method

Consider a set of n objects measured on each of m attributes or variables. The
n x m matrix of values will be denoted by X = {z;;} where ¢ is a member of
the set of objects and j a member of the attribute set. The objects may be
regarded as row vectors in IR™ and the attributes as column vectors in R".

In R™, the space of objects, PCA searches for the bestfitting set of orthog-
onal axes to replace the initially—given set of m axes in this space. An analogous
procedure is simultaneously carried out for the dual space, R™. First, the axis
which best fits the objects/points in R™ is determined. If u is this vector, and
is of unit length, then the product Xu of n x m matrix by m x 1 vector gives
the projections of the n objects onto this axis.

The criterion of goodness of fit of this axis to the cloud of points will be
defined as the squared deviation of the points from the axis. Minimizing the
sum of distances between points and axis is equivalent to maximizing the sum
of squared projections onto the axis (see Figure 2.3), i.e. to maximizing the
variance (or spread) of the points when projected onto this axis.

The sum of squared projections of points on the new axis, for all points, is

(Xu)'(Xu).

Such a quadratic form would increase indefinitely if u were arbitrarily large, so
u is chosen — arbitrarily but reasonably — to be of unit length, i.e. u'u = 1.
We seek a maximum of the quadratic form u'Su (where S = X'X) subject
to the constraint that u'u = 1. This is done by setting the derivative of the
Lagrangian equal to zero. Differentiation of

u'Su—A(u'u-1)
where A is a Lagrange multiplier gives
25u — 2\u.
The optimal value of u (let us call it u;) is the solution of
Su = Au.

The solution of this equation is well-known: u is the eigenvector associated
with the eigenvalue X\ of matrix S. Therefore the eigenvector of X'X, uy, is the
axis sought, and the corresponding largest eigenvalue, A1, is a figure of merit
for the axis, — it indicates the amount of variance explained by the axis (see
next section).
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For each point 1,
b = distance of i from new azxis,
¢ = projection of vector i onto new axis,
a = distance of point from origin.

By Pythagoras, a®> = b> + c2; since a is constant, the choice of new axis which
minimizes b simultaneously mazimizes c¢ (both of which are summed over all
points, i).

Figure 2.3: Projection onto an axis.

The second axis is to be orthogonal to the first, i.e. u'u; = 0, and satisfies
the equation

u'X'Xu— \(uu—1)— ps(u'uy)

where Ay and po are Lagrange multipliers. Differentiating gives

25u — 2)2u — pouy .

This term is set equal to zero. Multiplying across by u} implies that s
must equal 0. Therefore the optimal value of u, u,, arises as another solution
of Su = Au. Thus A2 and us are the second largest eigenvalue and associated
eigenvector of S.

The eigenvectors of S = X'X | arranged in decreasing order of corresponding
eigenvalues, give the line of best fit to the cloud of points, the plane of best fit,
the three-dimensional hyperplane of best fit, and so on for higher—dimensional
subspaces of best fit. X'X is referred to as the sums of squares and cross
products matrix.

It has been assumed that the eigenvalues decrease in value: equal eigenvalues
are possible, and indicate that equally privileged directions of elongation have
been found. In practice, the set of equal eigenvalues may be arbitrarily ordered
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in any convenient fashion. Zero eigenvalues indicate that the space is actually
of dimensionality less than expected (the points might, for instance, lie on a
plane in three—dimensional space). The relevance of zero—valued eigenvalues is
returned to in Section 2.3.1 below.

2.2.4 Dual Spaces and Data Reduction

In the dual space of attributes, R", a PCA may equally well be carried out. For
the line of best fit, v, the following is maximized:

(X'v) (X'v)

subject to
viv=1.

In R™ we arrived at
XIXlll = Al up.

By similar reasoning, in IR", we have
XX'vi = mvy.
Premultiplying the first of these relationships by X yields
(XX (Xuy) = A\ (Xuy)

and so Ay = p; (because we have now arrived at two eigenvalue equations
which are identical in form). We must be a little more attentive to detail before
drawing a conclusion on the relationship between the eigenvectors in the two
spaces: in order that these be of unit length, it may be verified that

1
VAL

satisfies the foregoing equations. (The eigenvalue is necessarily positive, since if
zero there are no associated eigenvectors.) Similarly,

Xll1

Vi =

1
Vi = —Xllk
VA
and
1 '
u, = —X Vi

VA

for the k" largest eigenvalues and eigenvectors (or principal axes). Thus suc-
cessive eigenvalues in both spaces are the same, and there is a simple linear
transformation which maps the optimal axes in one space into those in the
other.

The variance of the projections on a given axis in R™ is given by (Xu)'(Xu),
which by the eigenvector equation, is seen to equal A.

In some software packages, the eigenvectors are rescaled so that v Au and
VAv are used instead of u and v. In this case, the factor VA u gives the new,
rescaled projections of the points in the space R™ (i.e. vVAu = X'v).
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The coordinates of the new axes can be written in terms of the old coordinate

system. Since
1
u=—X'v
VA
each coordinate of the new vector u is defined as a linear combination of the
initially—given vectors:

n 1 n
U; = E —F=ViT;; = E CiZij
J (2d¥] 1bij
i=1 \/X i=1

(where i < j < m and =;; is the (i,5)"" element of matrix X). Thus the jt*
coordinate of the new vector is a synthetic value formed from the j** coordinates
of the given vectors (i.e. z;; for all 1 <i < mn).

Since PCA in R™ and in R™ lead respectively to the finding of n and of m
eigenvalues, and since in addition it has been seen that these eigenvalues are
identical, it follows that the number of non—zero eigenvalues obtained in either
space is less than or equal to min(n,m).

It has been seen that the eigenvectors associated with the p largest eigen-
values yield the best—fitting p—dimensional subspace of R™. A measure of the
approximation is the percentage of variance explained by the subspace

n
SN/ M
k<p k=1
expressed as a percentage.

An alternative view of PCA as an approximation to the given points is as
follows. Taking the relationship between the unitary vectors in R™ and R™,
Xu = /At Vi, postmultiplying by uj, , and summing gives

n

in:uku;C = Z \/ﬁvkuk.
k=1

k=1

The summation on the left hand side gives the identity matrix (this follows
from the orthogonality of eigenvectors, so that the off-diagonal elements are
zero; and the fact that the eigenvectors are of unit norm, so that the diagonal
elements equal one), and so

X = Z \/ﬁvku;ﬁ.
k=1

This series expansion of the given matrix, X, is termed the Karhunen— Loeve
expansion. The p best eigenvectors therefore approximate the original matrix
by

P
X = Z \/Evku;c
k=1

and if p is very much less than n, and X approximately equal to X, an appre-
ciable economy in description has been obtained.
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2.2.5 Practical Aspects

Since the variables or attributes under analysis are often very different (some
will “shout louder” than others), it is usual to standardize each variable in
the following way. If r;; are the original measurements, then the matrix X of
(i, j)-value

_Tij =T
Tij = ———
Sj\/ﬁ
where
n
_ 1
Ti = — E rii
iT J
=1
and

n
57 = %Z(m - 7;)?
i=1
is submitted to the PCA (cf. Chapter 1, where standardization was discussed:
the multiplicative constant, 1/1/n, in the definition of z;; above is used so that
we may conveniently define correlations). The matrix to be diagonalized, X'X,
is then of (4, k)" term:

n n
1 _ _
pik = szjwik == Z(w —Ti)(rik —Tk)/sj5k
i=1 i=1
which is the correlation coefficient between variables j and k.

Using the definitions of z;; and s; above, the distance between variables j
and k is

n n n n
d*(j,k) = Z(ﬂfzg —zi)® = 2333] + fok - QZﬂfijﬂ?ik
i=1 i=1 i=1 i=1

and, substituting, the first two terms both yield 1, giving

d?(j,k) = 2(1 — pj).

Thus the distance between variables is directly proportional to the correla-
tion between them.
The distance between row vectors is

d*(i,h) = Z(:L“” — l'hj)2 = Z(%)Q = (r; —rp)' M(r; —rp)

where r; and r;, are column vectors (of dimensions m x 1) and M is the m x m
diagonal matrix of j* element 1/ns3. Therefore d is a Euclidean distance
associated with matrix M. Note that the row points are now centred but the
column points are not: therefore the latter may well appear in one quadrant on
output listings.
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Analysis of the matrix of (j,k)™ term p;; as defined above is PCA on a
correlation matrix. Inherent in this, as has been seen, is that the row vectors
are centred and reduced.

If, instead, centring was acceptable but not the rescaling of the variance, we
would be analysing the matrix of (4, k)** term

1 o _ _
Cjk = > (rij =) (rix = ).

i=1

In this case we have PCA of the variance-covariance matrix.
The following should be noted.

e We may speak about carrying out a PCA on the correlation matrix,
on a variance—covariance matrix, or on the “sums of squares and cross—
products” matrix. These relate to intermediate matrices which are most
often determined by the PCA program. The user should however note
the effect of transformations on his/her data (standardization, centring)
which are inherent in these different options.

e Rarely is it recommendable to carry out a PCA on the “sums of squares
and cross—products” matrix; instead some transformation of the original
data is usually necessary. In the absence of justification for treating the
data otherwise, the most recommendable strategy is to use the option of
PCA on a correlation matrix.

e All the quantities defined above (standard deviation, variances and covari-
ances, etc.) have been in population rather than in sample terms. That
is to say, the data under examination is taken as all we can immediately
study, rather than being representative of a greater underlying distribution
of points. Not all packages and program libraries share this viewpoint, and
hence discrepancies may be detected between results obtained in practice
from different sources.

2.2.6 Iterative Solution of Eigenvalue Equations

A simple iterative scheme for solving the eigenvector equation Au = Au is as
follows.
Choose some trial vector, to : e.g. (1,1,...,1). Then define tq,ts,...:

At() = Xp tl = Xo/\/X{)XO
Atl = X1 t2 = xl/\/x’lxl

At2:X2 t3:

We halt when there is sufficient convergence: |t, —t,11| < €, for some small,
real € ; or when the number of iterations exceeds some maximum (e.g. 15). In
the latter case, another choice of ty will be tried.

If there is convergence, t,, = t,,+1, we have the following;:

At,, = x,

tnt1 = Xn/\/XLXnp.

Substituting for x,, in the first of these two equations gives
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Aty = /xLxp thia.

Hence, since t,, = t,41, t,, is none other than the eigenvector sought; and
the associated eigenvalue is \/x/ x,,.

The second eigenvector and associated eigenvalue may be found by carrying
out a similar iterative algorithm on a matrix where the effects of u; and A; have
been partialled out: Ay = A — Ajuyu). Let us prove that A, removes the
effects due to the first eigenvector and eigenvalue. We have Au = Au. Therefore
Auu’ = \uu’; or equivalently, Aupu), = Apuguj, for each eigenvalue. Summing
over k gives:

A E upuy, = E Apugpuy.
k k

The summed term on the left hand side equals the identity matrix (this has
already been seen in Section 2.2.4 above). Therefore we have

A= )\111111,1 + )\2[1211’2 + ...

From this spectral decomposition of matrix A, we may successively remove
the effects of the eigenvectors and eigenvalues as they are obtained.

Many other algorithms are available for solving eigen—equations: Chambers
(1977) may be consulted for algorithms which are more likely to be implemented
in the major commercial packages or subroutine libraries; and Smith et al.
(1976) contains many Fortran implementations.

2.3 Examples and Bibliography

2.3.1 General Remarks
Among the objectives of PCA are the following:

1. dimensionality reduction;

2. the determining of linear combinations of variables;

3. feature selection: the choosing of the most useful variables;
4. visualization of multidimensional data;

5. identification of underlying variables;

6. identification of groups of objects or of outliers.
The tasks required of the analyst to carry these out are as follows:

1. In the case of a table of dimensions n X m, each of the n rows or objects can
be regarded as an m—dimensional vector. Finding a set of m' < m prin-
cipal axes allows the objects to be adequately characterised on a smaller
number of (artificial) variables. This is advantageous as a prelude to fur-
ther analysis as the m—m’ dimensions may often be ignored as constituting
noise; and, secondly, for storage economy (sufficient information from the
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initial table is now represented in a table with m' < m columns). Reduc-
tion of dimensionality is practicable if the first m' new axes account for
approximately 75 % or more of the variance. There is no set threshold, —
the analyst must judge. The cumulative percentage of variance explained
by the principal axes is consulted in order to make this choice.

2. If the eigenvalue is zero, the variance of projections on the associated
eigenvector is zero. Hence the eigenvector is reduced to a point. If this
point is additionally the origin (i.e. the data are centred), then we have
Xu=Au=0. Le. Zj u;x; = 0, where x; is the §*" column vector of X.
This allows linear combinations between the variables to be found. In fact,
we can go a good deal further: by analysing second—order variables, defined
from the given variables, quadratic dependencies can be staightforwardly
sought. This means, for example, that in analysing three variables, y;, y2,
and y3, we would also input the variables y%, y2, y2, y1Y2, y1¥3, and y2y3.
If the linear combination

Y1 = c1ys + Coy1ye

exists, then we would find it. Similarly we could feed in the logarithms or
other functions of variables.

3. In feature selection we want to simplify the task of characterising each
object by a set of attributes. Linear combinations among attributes must
be found; highly correlated attributes (i.e. closely located attributes in the
new space: cf. section 2.2.5) allow some attributes to be removed from
consideration; and the proximity of attributes to the new axes indicate
the more relevant and important attributes.

4. In order to provide a convenient representation of multidimensional data,
planar plots are necessary. An important consideration is the adequacy of
the planar representation: the percentage variance explained by the pair
of axes defining the plane must be looked at here.

5. PCA is often motivated by the search for latent variables. Often it is
relatively easy to label the highest or second highest components, but
it becomes increasingly difficult as less relevant axes are examined. The
objects with the highest loadings or projections on the axes (i.e. those
which are placed towards the extremities of the axes) are usually worth
examining: the axis may be characterisable as a spectrum running from
a small number of objects with high positive loadings to those with high
negative loadings.

6. A visual inspection of a planar plot indicates which objects are grouped
together, thus indicating that they belong to the same family or result
from the same process. Anomalous objects can also be detected, and in
some cases it might be of interest to redo the analysis with these excluded
because of the perturbation they introduce.

2.3.2 Artificial Data

Data of the following characteristics was generated in order to look at the use
of PCA for ascertaining quadratic dependencies. Thirty objects were used, and
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in total 5 variables.

yj=—14,-13,...,15

y2j = 2.0 — i
Yzj = y%j

Yaj = y%,-

Ysi = Y1925

The output obtained follows. We could plot the row—points or column—points
in the principal plane, using the coordinates found. The fifth eigenvalue is zero;
hence the variance of the associated principal component is zero. Since we know
in addition that the eigenvectors are centred, we therefore have the equation:

0.7071y> + 0.7071y3 = 0.0

Note again that variables y» and ys have been redefined so that each value is
centred (see section 2.2.5 above regarding PCA of a covariance matrix).

COVARIANCE MATRIX FOLLOWS.

22.4750

-2.2475 13.6498

2.2475 -13.6498 13.6498

-2.9262 28.0250 -28.0250 62.2917

14.5189 0.5619 -0.5619 0.7316 17.3709

EIGENVALUES FOLLOW.

Eigenvalues As Percentages Cumul. Percentages
88.3852 68.2842 68.2842
34.5579 26.6985 94.9828

5.2437 4.0512 99.0339
1.2505 0.9661 100.0000
0.0000 0.0000 100.0000

EIGENVECTORS FOLLOW.

1 -0.0630 0.7617 0.6242 -0.1620 0.0000
2 0.3857 0.0067 -0.1198 -0.5803 0.7071
3 -0.3857 -0.0067 0.1198 0.5803 0.7071
4 0.8357 0.0499 0.1593 0.5232 0.0000
5 0.0018 0.6460 -0.7458 0.1627 0.0000

PROJECTIONS OF ROW-POINTS FOLLOW.

OBJECT PR0OJ-1 PR0OJ-2 PR0J-3 PROJ-4 PROJ-5
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1 -2.5222 -1.2489 -0.9036 0.5779 0.0000
2 -2.2418 -1.3886 -0.6320 0.2413 0.0000
3 -1.8740 -1.4720 -0.3942 0.0050 0.0000
4  -1.4437 -1.5046 -0.1905 -0.1478 0.0000
5 -0.9741 -1.4915 -0.0209 -0.2324 0.0000
6 -0.4862 -1.4379 0.1153 -0.2630 0.0000
7 0.0009 -1.3488 0.2187 -0.2525 0.0000
8 0.4702 -1.2292 0.2906 -0.2125 0.0000
9 0.9065 -1.0837 0.3327 -0.1535 0.0000
10 1.2969 -0.9171 0.3469 -0.0845 0.0000
11 1.6303 -0.7338 0.3355 -0.0136 0.0000
12 1.8977 -0.5383 0.3014 0.0528 0.0000
13 2.0920 -0.3349 0.2477 0.1093 0.0000
14 2.2083 -0.1278 0.1779 0.1516 0.0000
15 2.2434 0.0791 0.0958 0.1771 0.0000
16 2.1964 0.2817 0.0059 0.1840 0.0000
17 2.0683 0.4762 -0.0873 0.1720 0.0000
18 1.8620 0.6590 -0.1787 0.1420 0.0000
19 1.5826 0.8264 -0.2629 0.0962 0.0000
20 1.2371 0.9751 -0.3341 0.0381 0.0000
21 0.8345 1.1016 -0.3860 -0.0278 0.0000
22 0.3858 1.2027 -0.4121 -0.0955 0.0000
23 -0.0959 1.2755 -0.4055 -0.1578 0.0000
24 -0.5957 1.3168 -0.3587 -0.2062 0.0000
25 -1.0964 1.3238 -0.2641 -0.2312 0.0000
26 -1.5792 1.2938 -0.1135 -0.2216 0.0000
27 -2.0227 1.2242 0.1015 -0.1653 0.0000
28 -2.4042 1.1124 0.3898 -0.0489 0.0000
29 -2.6984 0.9561 0.7607 0.1424 0.0000
30 -2.8783 0.7530 1.2238 0.4245 0.0000

PROJECTIONS OF COLUMN-POINTS FOLLOW.

VBLE. PROJ-1 PR0OJ-2 PR0OJ-3 PROJ-4 PROJ-5

1 -0.6739 2.7008 0.3289 -0.0203 0.0000
2 4.1259 0.0236 -0.0632 -0.0726 0.0000
3 -4.1259 -0.0236 0.0632 0.0726 0.0000
4 8.9388 0.1768 0.0840 0.0654 0.0000
5 0.0196 2.2906 -0.3930 0.0203 0.0000

2.3.3 Examples from Astronomy

PCA has been a fairly widely used technique in astronomy. The following list
does not aim to be comprehensive, but indicates instead the types of problems
to which PCA can be applied. It is also hoped that it may provide a convenient
entry—point to literature on a topic of interest. References below are concerned
with stellar parallaxes; a large number are concerned with the study of galaxies;
and a large number relate also to spectral reduction.

1. A. Bijaoui, “Application astronomique de la compression de l'inform-
ation”, Astronomy and Astrophysics, 30, 199-202, 1974.

2. A. Bijaoui, SAI Library, Algorithms for Image Processing, Nice Observa-
tory, Nice, 1985.

(A large range of subroutines for image processing, including the Karhunen—
Loeve expansion.)
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10.

11.

12.

13.

14.

15.

16.
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. P. Brosche, “The manifold of galaxies: Galaxies with known dynamical
properties”, Astronomy and Astrophysics, 23, 259-268, 1973.

. P. Brosche and F.T. Lentes, “The manifold of globular clusters”, Astron-
omy and Astrophysics, 139, 474-476, 1984.

. V. Bujarrabal, J. Guibert and C. Balkowski, “Multidimensional statisti-
cal analysis of normal galaxies”, Astronomy and Astrophysics, 104, 1-9,
1981.

. R. Buser, “A systematic investigation of multicolor photometric systems.
I. The UBV, RGU and wwby systems.”, Astronomy and Astrophysics, 62,
411-424, 1978.

C.A. Christian and K.A. Janes, “Multivariate analysis of spectropho-
tometry”. Publications of the Astronomical Society of the Pacific, 89,
415-423, 1977.

. C.A. Christian, “Identification of field stars contaminating the colour—
magnitude diagram of the open cluster Be 21", The Astrophysical Journal
Supplement Series, 49, 555-592, 1982.

. T.J. Deeming, “Stellar spectral classification. I. Application of component
analysis”, Monthly Notices of the Royal Astronomical Society, 127, 493~
516, 1964.

(An often referenced work.)

T.J. Deeming, “The analysis of linear correlation in astronomy”, Vistas
in Astronomy, 10, 125, 1968.

(For regression also.)

G. Efstathiou and S.M. Fall, “Multivariate analysis of elliptical galaxies”,
Monthly Notices of the Royal Astronomical Society, 206, 453—-464, 1984.

S.M. Faber, “Variations in spectral-energy distributions and absorption—
line strengths among elliptical galaxies”, The Astrophysical Journal, 179,
731-754, 1973.

M. Fofi, C. Maceroni, M. Maravalle and P. Paolicchi, “Statistics of binary
stars. I. Multivariate analysis of spectroscopic binaries”, Astronomy and
Astrophysics, 124, 313-321, 1983.

(PCA is used, together with a non-hierarchical clustering technique.)

M. Fracassini, L.E. Pasinetti, E. Antonello and G. Raffaelli, “Multivariate
analysis of some ultrashort period Cepheids (USPC)”, Astronomy and
Astrophysics, 99, 397-399, 1981.

M. Fracassini, G. Manzotti, L.E. Pasinetti, G. Raffaelli, E. Antonello
and L. Pastori, “Application of multivariate analysis to the parameters
of astrophysical objects”, in Statistical Methods in Astronomy, European
Space Agency Special Publication 201, 21-25, 1983.

P. Galeotti, “A statistical analysis of metallicity in spiral galaxies”, As-
trophysics and Space Science, 75, 511-519, 1981.



2.3.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.
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A. Heck, “An application of multivariate statistical analysis to a photo-
metric catalogue”, Astronomy and Astrophysics, 47, 129-135, 1976.

(PCA is used, along with regression and discriminant analysis.)

A. Heck, D. Egret, Ph. Nobelis and J.C. Turlot, “Statistical confirma-
tion of the UV spectral classification system based on IUE low—dispersion
spectra”, Astrophysics and Space Science, 120, 223-237, 1986.

(Many other articles by these authors, which also make use of PCA, are
referenced in the above.)

S.J. Kerridge and A.R. Upgren, “The application of multivariate analysis
to parallax solutions. II. Magnitudes and colours of comparison stars”,
The Astronomical Journal, 78, 632-638, 1973.

(See also Upgren and Kerridge, 1971, referenced below.)

J. Koorneef, “On the anomaly of the far UV extinction in the 30 Doradus
region”, Astronomy and Astrophysics, 64, 179-193, 1978.

(PCA is used for deriving a photometric index from 5—channel photometric
data.)

M.J. Kurtz, “Automatic spectral classification”, PhD Thesis, Dartmouth
College, New Hampshire, 1982.

F.T. Lentes, “The manifold of spheroidal galaxies”, Statistical Methods
in Astronomy, Furopean Space Agency Special Publication 201, 73-76,
1983.

D. Massa and C.F. Lillie, “Vector space methods of photometric analysis:
applications to O stars and interstellar reddening”, The Astrophysical
Journal, 221, 833-850, 1978.

D. Massa, “Vector space methods of photometric analysis. III. The
two components of ultraviolet reddening”, The Astronomical Journal, 85,
1651-1662, 1980.

B. Nicolet, “Geneva photometric boxes. I. A topological approach of
photometry and tests.”, Astronomy and Astrophysics, 97, 85-93, 1981.

(PCA is used on colour indices.)

S. Okamura, K. Kodaira and M. Watanabe, “Digital surface photometry
of galaxies toward a quantitative classification. III. A mean concentra-
tion index as a parameter representing the luminosity distribution”, The
Astrophysical Journal, 280, 7-14, 1984.

S. Okamura, “Global structure of Virgo cluster galaxies”,in O.-G. Richter
and B. Binggeli (eds.), Proceedings of ESO Workshop on The Virgo Clus-
ter of Galaxies, ESO Conference and Workshop Proceedings No. 20, 201-
215, 1985.

D. Pelat, “A study of H I absorption using Karhunen-Loeve series”, As-
tronomy and Astrophysics, 40, 285-290, 1975.
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31.

32.

33.

34.

35.
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. A. W. Strong, “Data analysis in gamma-ray astronomy: multivariate
likelihood method for correlation studies”, Astronomy and Astrophysics,
150, 273-275, 1985.

(The method presented is not linked to PCA, but in dealing with the
eigenreduction of a correlation matrix it is clearly very closely related.)

. B. Takase, K. Kodaira and S. Okamura, An Atlas of Selected Galaxies,
University of Tokyo Press, VNU Science Press, 1984.

D.J. Tholen, “Asteroid taxonomy from cluster analysis of photometry”,
PhD Thesis, University of Arizona, 1984.

A.R. Upgren and S.J. Kerridge, “The application of multivariate analysis
to parallax solutions. I. Choice of reference frames”, The Astronomical
Journal, 76, 655-664, 1971.

(See also Kerridge and Upgren, 1973, referenced above.)

J.P. Vader, “Multivariate analysis of elliptical galaxies in different envi-
ronments”, The Astrophysical Journal, 306, 390-400, 1986.

(The Virgo and Coma clusters are studied.)

C.A. Whitney, “Principal components analysis of spectral data. L

Methodology for spectral classification”, Astronomy and Astrophysics Sup-
plement Series, 51, 443-461, 1983.

B.C. Whitmore, “An objective classification system for spiral galaxies. I.
The two dominant dimensions”, The Astrophysical Journal, 278, 61-80,
1984.

2.3.4 General References

1. T.W. Anderson, An Introduction to Multivariate Statistical Analysis, Wi-

ley, New York, 1984 (2nd ed.).
(For inferential aspects relating to PCA.)

. J.M. Chambers, Computational Methods for Data Analysis, Wiley, New

York, 1977.

. C. Chatfield and A.J. Collins, Introduction to Multivariate Analysis,

Chapman and Hall, 1980.
(A good introductory textbook.)

. R. Gnanadesikan, Methods for Statistical Data Analysis of Multivariate

Observations, Wiley, New York, 1977.

(For details of PCA, clustering and discrimination.)

. M. Kendall, Multivariate Analysis, Griffin, London, 1980 (2nd ed.).

(Dated in relation to computing techniques, but exceptionally clear and
concise in its treatment of many practical problems.)



2.3. EXAMPLES AND BIBLIOGRAPHY 35

6. L. Lebart, A. Morineau and K.M. Warwick, Multivariate Descriptive
Statistical Analysis, Wiley, New York, 1984.

(An excellent geometric treatment of PCA.)

7. F.H.C. Marriott, The Interpretation of Multiple Observations, Academic
Press, New York, 1974.
(A short, readable textbook.)

8. B.T. Smith et al., Matrix Eigensystem Routines — EISPACK Guide,

Lecture Notes in Computer Science 6, Springer Verlag, Berlin and New
York, 1976.
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2.4 Software and Sample Implementation

2.4.1 Fortran Code, Sample Input and Output

The following is a listing of the Principal Components Analysis program. Note
that input and output is handled by subroutines. It may, in certain cases,
be desirable to alter the output formats. Alternatively, there is a “switch”
which allows no output to be produced and instead a driving routine can use
information passed back in the arrays and vectors, as indicated.

No extra subroutines are required to run the program, except for a driving
routine.

The following subroutines are called from the main PCA routine.

1. CORCOL determines correlations.
2. COVCOL determines covariances.

SCPCOL determines sums of squares and cross—products.

-

TRED2 reduces a symmetric matrix to tridiagonal form.

ot

TQL2 derives eigenvalues and eigenvectors of a tridiagonal matrix.
OUTMAT outputs a matrix.
OUTHMT outputs a diagonal half-matrix.

OUTEVL outputs eigenvalues.

© » N >

OUTEVC outputs eigenvectors.

10. OUTPRX outputs projections of row—points.

11. OUTPRY outputs projections of column—points.
12. PROJX determines projections of row—points.

13. PROJY determines projections of column—points.

2.4.2 Fortran Progam Listing

O i B T L i S AL H L

Carry out a PRINCIPAL COMPONENTS ANALYSIS
(KARHUNEN-LOEVE EXPANSION).

To call: CALL PCA(N,M,DATA,METHOD,IPRINT,A1,W1,W2,A2,IERR)
where

N, M : integer dimensions of ...

DATA : input data.
On output, DATA contains in first 7 columns the
projections of the row-points on the first 7
principal components.

METHOD: analysis option.
= 1: on sums of squares & cross products matrix.

sNoNoNsEsNsEsNosNoNeoNoNoNeoNe Nl
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= 2: on covariance matrix.
= 3: on correlation matrix.
IPRINT: print optioms.
= 0: no printed output- arrays/vectors, only, contain
items calculated.
= 1: eigenvalues, only, output.
= 2: printed output, in addition, of correlation (or
other) matrix, eigenvalues and eigenvectors.
3: full printing of items calculated.
Al : correlation, covariance or sums of squares &
cross-products matrix, dimensions M * M.
On output, Al contains in the first 7 columns the
projections of the column-points on the first 7
principal components.
W1,W2 : real vectors of dimension M (see called routines for
use) .
On output, W1 contains the cumulative percentage
variances associated with the principal components.
A2 : real array of dimensions M * M (see routines for use).
IERR : error indicator (normally zero).

Inputs here are N, M, DATA, METHOD, IPRINT (and IERR).

OQutput information is contained in DATA, A1, and Wi.

All printed outputs are carried out in easily recognizable sub-
routines called from the first subroutine following.

If IERR > O, then its value indicates the eigenvalue for which
no convergence was obtained.

cNoNoNsEsEsEsEsEsEsEosNsNosNsEsNoNosNoNoNoNoNoNoNoNoNoNo Moo Ne]

C-——— -
SUBROUTINE PCA(N,M,DATA,METHOD,IPRINT,A,W,FV1,Z,IERR)
REAL DATA(N,M), AQM,M), W), FVi(M), Z(M,M)

¢
IF (METHOD.EQ.1) GOTO 100
IF (METHOD.EQ.2) GOTO 400

C If method.eq.3 or otherwise
GOTO 700

C

C Form sums of squares and cross-products matrix.

¢

100  CONTINUE
CALL SCPCOL(N,M,DATA,A)

C
IF (IPRINT.GT.1) CALL OUTHMT(METHOD,M,A)
C
C Now do the PCA.
C
GOTO 1000
C
C Form covariance matrix.
C

400  CONTINUE
CALL COVCOL(N,M,DATA,W,A)

C
IF (IPRINT.GT.1) CALL OUTHMT(METHOD,M,A)
C
C Now do the PCA.
C

GOTO 1000
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Q

Construct correlation matrix.

700  CONTINUE
CALL CORCOL(N,M,DATA,W,FV1,A)

¢
IF (IPRINT.GT.1) CALL QUTHMT(METHOD,M,A)
¢
C Now do the PCA.
¢
GOTO 1000
¢
C Carry out eigenreduction.
¢

1000 M2 = M
CALL TRED2(M,M2,A,W,FV1,Z)
CALL TQL2(M,M2,W,FV1,Z,IERR)
IF (IERR.NE.O) GOTO 9000

C
C Output eigenvalues and eigenvectors.
C
IF (IPRINT.GT.0) CALL QUTEVL(N,M,W)
IF (IPRINT.GT.1) CALL OUTEVC(N,M,Z)
C
C Determine projections and output them.
C
CALL PROJX(N,M,DATA,Z,FV1)
IF (IPRINT.EQ.3) CALL OUTPRX(N,M,DATA)
CALL PROJY(M,W,A,Z,FV1)
IF (IPRINT.EQ.3) CALL OUTPRY(M,A)
C
9000  RETURN
END
L A i T B o B g
C

C Determine correlations of columns.
C First determine the means of columns, storing in WORK1.

¢
C ________________________________________________________
SUBROUTINE CORCOL(N,M,DATA,WORK1,WORK2,0UT)
DIMENSION DATA(N,M), OUT(M,M), WORK1(M), WORK2(M)
DATA EPS/1.E-10/
¢
DD 30 J =1, M
WORK1(J) = 0.0
DO 20 I =1, N
WORK1(J) = WORK1(J) + DATA(I,J)
20 CONTINUE
WORK1(J) = WORK1(J)/FLOAT(N)
30 CONTINUE
¢
C Next det. the std. devns. of cols., storing in WORK2.
¢

DO 50 J=1, M

WORK2(J) = 0.0

D040 I =1, N
WORK2(J) = WORK2(J) + (DATA(I,J)

X -WORK1(J) )*(DATA(I,J)-WORK1(J))
40 CONTINUE

WORK2(J) = WORK2(J)/FLOAT(N)

WORK2(J) = SQRT(WORK2(J))

IF (WORK2(J).LE.EPS) WORK2(J) = 1.0



2.4. SOFTWARE AND SAMPLE IMPLEMENTATION

50 CONTINUE

Q

Now centre and reduce the column points.

DO70I =1, N
D0 60 J =1,
DATA(I,J) = (DATA(I,J)
X -WORK1(J))/(SQRT(FLOAT(N))*WORK2(J))
60 CONTINUE
70  CONTINUE

M

Q

Finally calc. the cross product of the data matrix.

DO 100 J1 =1, M-1
0UT(J1,J1) 1.0
DO 90 J2 = Ji+1, M
0UT(J1,J2) = 0.0

J
2
DO8OI=1, N

0UT(J1,J2) = 0OUT(J1,J2) + DATA(I,J1)*DATA(I,J2)

80 CONTINUE
0UT(J2,J1) = OUT(J1,J2)
90 CONTINUE
100  CONTINUE
OUT(M,M) = 1.0

RETURN
END
O R i i B B o S T O S A

C Determine covariances of columns.
C First determine the means of columns, storing in WORK.

C ______________________________________________________
SUBROUTINE COVCOL(N,M,DATA,WORK,OUT)
DIMENSION DATA(N,M), OUT(M,M), WORK(M)

C
D030J=1, M

WORK(J) = 0.0
D020I =1, N
WORK(J) = WORK(J) + DATA(I,J)
20 CONTINUE
WORK(J) = WORK(J)/FLDAT(N)
30  CONTINUE

C

C Now centre the column points.

C
DOBOI =1, N

D040 J =1, M
DATA(I,J) = DATA(I,J)-WORK(J)
40 CONTINUE
50  CONTINUE

C

C Finally calculate the cross product matrix of the

C redefined data matrix.

C

DO 80 J1 =1, M
DO 70 J2 = J1, M
0UT(J1,J2) = 0.
D060 I =1, N
0UT(J1,J2) = 0UT(J1,J2) + DATA(I,J1)*DATA(I,J2)
60 CONTINUE
0UT(J2,J1) = 0UT(J1,J2)

0

39
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70 CONTINUE
80  CONTINUE
C
RETURN
END
O o R Rt
C
C Determine sums of squares and cross-products of columns.
C
c--—————— e ———
SUBROUTINE SCPCOL(N,M,DATA,QUT)
DIMENSION DATA(N,M), OUT(M,M)
¢
DO 30 J1 =1, M
DO 20 J2 =J1, M
0UT(J1,J2) = 0.0
D010 I =1, N
0UT(J1,J2) = 0UT(J1,J2) + DATA(I,J1)=*DATA(I,J2)
10 CONTINUE
0UT(J2,J1) = 0UT(J1,J2)
20 CONTINUE
30  CONTINUE
C
RETURN
END

[ e L B

Reduce a real, symmetric matrix to a symmetric, tridiagonal
matrix.

To call: CALL TRED2(NM,N,A,D,E,Z) where

NM = row dimension of A and Z;

= order of matrix A (will always be <= NM);

symmetric matrix of order N to be reduced to tridiag. form;

= vector of dim. N containing, on output, diagonal elts. of

tridiagonal matrix.

E = working vector of dim. at least N-1 to contain subdiagonal
elements.

Z = matrix of dims. NM by N containing, on output, orthogonal
transformation matrix producing the reduction.

o= =
n

Normally a call to TQL2 will follow the call to TRED2 in order to
produce all eigenvectors and eigenvalues of matrix A.

Algorithm used: Martin et al., Num. Math. 11, 181-195, 1968.
Reference: Smith et al., Matrix Eigensystem Routines - EISPACK

Guide, Lecture Notes in Computer Science 6, Springer-Verlag,
1976, pp. 489-494.

cNoNoNsNsNoNosNoNoNoNoNoNoNoNoNoNoNoNoNoNoNoNoNoNe!

SUBROUTINE TRED2(NM,N,A,D,E,Z)
REAL A(NM,N),D(N),E(N),Z(NM,N)

Q

DO 100 I =1, N
DO 100 J =1, I
Z(I1,J) = A(I,D)
100  CONTINUE
IF (N.EQ.1) GOTO 320
DO 300 II =2, N
I=N+2-1I
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120

130

140

150

180

200

220

240

260
290
300
320

340

L=I-1
H=0.0
SCALE = 0.0

IF (L.LT.2) GOTD 130
DO 120 K =1, L

SCALE = SCALE + ABS(Z(I,K))
CONTINUE
IF (SCALE.NE.0.0) GOTO 140
E(I) = Z(I,L)
GOTO 290
DO 150 K = 1, L

Z(I,K) = Z(I,K)/SCALE

H =H + Z(I,K)*Z(I,K)
CONTINUE

F = Z(I,L)
G = -SIGN(SQRT(H),F)
E(I) = SCALE * G

H=H-F *xG
Z(I,L) =F -G
F =0.0

DO 240 J =1, L
zZ(J,1) = z(I,3)/H
G =0.0
Form element of AxU.
DO 180 K =1, J
G =G + Z(J,K)*Z(I,K)
CONTINUE
JPL =J + 1
IF (L.LT.JP1) GOTO 220
DO 200 K = JP1, L
G =G + Z(K,J)*Z(I,K)
CONTINUE
Form element of P where P =1 - U U’ / H .
E(J) = G/H
F=F+ EQ) *x Z(I1,J)
CONTINUE
HH = F/(H + H)
Form reduced A.
DO 260 J =1, L

F = Z(1,J)
G =EQ) -HH *xF
EJ) =G

DO 250 K =1, J
Z(J,K) = Z(J,K) - F+E(K) - G*Z(I,K)
CONTINUE
CONTINUE
D(I) = H
CONTINUE
D(1) = 0.0
E(1) = 0.0
Accumulation of transformation matrices.
DO 500 I =1, N
L=I-1
IF (D(I).EQ.0.0) GOTOD 380
DO 360 J =1, L

G =0.0
DO 340 K = 1, L

G =G+ Z(I,K) * Z(K,J)
CONTINUE
DO 350 K = 1, L

41
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z(X,J) = Z(K,J) - G * Z(X,I)

350 CONTINUE

360 CONTINUE

380 D(I) = Z(I,I)
Z(I,I) = 1.0

IF (L.LT.1) GOTO 500
DO 400 J =1, L

Z(I,J) = 0.0
Z(J,I) = 0.0
400 CONTINUE
500 CONTINUE
C
RETURN

END
O e A o

Determine eigenvalues and eigenvectors of a symmetric,
tridiagonal matrix.

To call: CALL TQL2(NM,N,D,E,Z,IERR) where

NM = row dimension of Z;

= order of matrix Z;

= vector of dim. N containing, on output, eigenvalues;

= working vector of dim. at least N-1;

= matrix of dims. NM by N containing, on output, eigenvectors;
IERR = error, normally O, but 1 if no convergence.

NMmOoO=

Normally the call to TQL2 will be preceded by a call to TRED2 in
order to set up the tridiagonal matrix.

Algorithm used: QL method of Bowdler et al., Num. Math. 11,
293-306, 1968.

Reference: Smith et al., Matrix Eigensystem Routines - EISPACK
Guide, Lecture Notes in Computer Science 6, Springer-Verlag,
1976, pp. 468-474.

eNeoNoNoNoNoNoNoNoNoNoNoNoNoNoNoNoNoNoNeoNeNeo N

C ______________________________________________________________
SUBROUTINE TQL2(NM,N,D,E,Z,IERR)
REAL  D(N), E(N), Z(NM,N)
DATA  EPS/1.E-12/

c

IERR = 0
IF (N.EQ.1) GOTO 1001
DO 100 I =2, N
E(I-1) = E(I)
100  CONTINUE

F =0.0
B =0.0
E(N) =0.0

DO 240 L =1, N

J=0

H = EPS * (ABS(D(L)) + ABS(E(L)))

IF (B.LT.H) B=H
C Look for small sub-diagonal element.

DO 110 M =L, N

IF (ABS(E(M)).LE.B) GOTO 120
C E(N) is always O, so there is no exit through
C the bottom of the loop.
110 CONTINUE
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120
130

140

160

180

200

220
240

IF (M.EQ.L) GOTO 220

IF (J.EQ.30) GOTO 1000
J=J+1

Form shift.

L1 =L+1

G = D(L)

P = (D(L1)-G)/(2.0%E(L))
R = SQRT(P*P+1.0)

D(L) = E(L)/(P+SIGN(R,P))
H = G-D(L)

DO 140 I = L1, N
D(I) = D(I) - H

CONTINUE
F=F+H

QL transformation.
P = D(M)

c=1.0

S =0.0

MML =M - L

DO 200 II =1, MML

I=M-1II
G =C * E(I)

H=C=* P

IF (ABS(P).LT.ABS(E(I))) GOTO 150
C = E(I)/P

R = SQRT(C*C+1.0)
E(I+1) =S * P * R

S =C/R
C=1.0/R
GOTO 160
C = P/E(I)

R = SQRT(C*C+1.0)
E(I+1) =S % E(I) * R
S =1.0/R
C=C=x*x3S§S
P=Cx*D(I) -8 *G
D(I+1) = H + S * (C * G + S * D(I))
Form vector.
DO 180 K =1, N
H = Z(K,I+1)
Z(K,I+1) =S % Z(K,I) + C * H
Z(K,I) = C * Z(K,I) - S *x H
CONTINUE
CONTINUE
E(L) =S5 * P
D(L) =C % P
IF (ABS(E(L)).GT.B) GOTOD 130
D(L) = D(L) + F

CONTINUE

Order eigenvectors and eigenvalues.
DO 300 II =2, N

I=1II-1
K=1I
P = D(D)

DO 260 J = II, N
IF (D(J).GE.P) GOTD 260
K=17J
P = D(J)

43
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260

280
300

C
1000
1001

CHAPTER 2. PRINCIPAL COMPONENTS ANALYSIS

CONTINUE
IF (K.EQ.I) GOTO 300
D(X) = D(I)
D(I) = P
DO 280 J =1, N
P = z(J,I)
zZ(J,I) = 2(J,K)
Z(J,K) =P
CONTINUE
CONTINUE

GOTO 1001

Set error - no convergence after 30 iterns.
IERR = L

RETURN

END

O e A B B

¢

C Output array.

100

1000

SUBROUTINE OUTMAT(N,M,ARRAY)
DIMENSION ARRAY(N,M)

DO 100 K1 =1, N
WRITE (6,1000) (ARRAY(K1,K2),K2=1,M)
CONTINUE

FORMAT(10(2X,F8.4))
RETURN
END

[ e B B B i o S S T A A A A A S

C

C Output half of (symmetric) array.

100
1000
2000

3000
4000

SUBROUTINE OUTHMT(ITYPE,NDIM,ARRAY)
DIMENSION ARRAY(NDIM,NDIM)

IF (ITYPE.EQ.1) WRITE (6,1000)
IF (ITYPE.EQ.2) WRITE (6,2000)
IF (ITYPE.EQ.3) WRITE (6,3000)

DO 100 K1 = 1, NDIM
WRITE (6,4000) (ARRAY(K1,K2),K2=1,K1)
CONTINUE

FORMAT

(1HO, ’SUMS OF SQUARES & CROSS-PRODUCTS MATRIX FOLLOWS.’,/)
FORMAT(1HO, ’COVARIANCE MATRIX FOLLOWS.’,/)

FORMAT(1HO, *CORRELATION MATRIX FOLLOWS.’,/)
FORMAT(8(2X,F8.4))

RETURN

END

O e T o

C

C Output eigenvalues in order of decreasing value.

SUBROUTINE OUTEVL(N,NVALS,VALS)
DIMENSION VALS (NVALS)
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TOT = 0.0
DO 100 K = 1, NVALS
TOT = TOT + VALS(K)
100 CONTINUE

C
WRITE (6,1000)
CUM = 0.0
K = NVALS + 1
C
M = NVALS
¢ (We only want Min(nrows,ncols) eigenvalues output:)
M = MINO(N,NVALS)
c

WRITE (6,1010)
WRITE (6,1020)
200  CONTINUE
K=XK-1
CUM = CUM + VALS(K)
VPC = VALS(K) * 100.0 / TOT
VCPC = CUM * 100.0 / TOT
WRITE (6,1030) VALS(K),VPC,VCPC
VALS(K) = VCPC
IF (K.GT.NVALS-M+1) GOTD 200

RETURN
1000  FORMAT(’ EIGENVALUES FOLLOW.’)
1010  FORMAT

X(’ Eigenvalues As Percentages Cumul. Percentages’)
1020  FORMAT
XO —=-==-mmmmm mmmmmmmmmmmem e )
1030 FORMAT(F13.4,7X,F10.4,10X,F10.4)
END

[ e i o S S L A

C ODutput FIRST SEVEN eigenvectors associated with

C eigenvalues in descending order.

¢

C-———— -
SUBROUTINE OUTEVC(N,NDIM,VECS)
DIMENSION VECS(NDIM,NDIM)

¢
NUM = MINO(N,NDIM,7)

¢

WRITE (6,1000)

WRITE (6,1010)

WRITE (6,1020)

DO 100 K1 = 1, NDIM

WRITE (6,1030) K1, (VECS(K1,NDIM-K2+1),K2=1,NUM)
100  CONTINUE

RETURN
1000  FORMAT(1HO, ’EIGENVECTORS FOLLOW.’,/)
1010  FORMAT
X (° VBLE. EV-1 EV-2 EV-3 EV-4 EV-5 EV-6
X EV-7?)
1020  FORMAT
X (’ __________________________________________

1030  FORMAT(I5,2X,7F8.4)

END
O e a2 T B e b
C

45
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C Output projections of row-points on first 7 principal components.

SUBROUTINE OUTPRX(N,M,PRJIN)
REAL PRIN(N,M)

NUM = MINO(M,7)
WRITE (6,1000)
WRITE (6,1010)
WRITE (6,1020)
DO 100 K = 1, N
WRITE (6,1030) K, (PRIN(K,J),J=1,NUM)
100  CONTINUE

1000 FORMAT(1HO, *’PROJECTIONS OF ROW-POINTS FOLLOW.’,/)

1010 FORMAT
X (’ OBJECT PROJ-1 PROJ-2 PR0J-3 PROJ-4 PROJ-5 PR0OJ-6
X PROJ-77)

1020 FORMAT
X (1 __________________________________________

1030  FORMAT(I5,2X,7F8.4)
RETURN
END
O a2 o B
¢
C Output projections of columns on first 7 principal components.

SUBROUTINE OUTPRY(M,PRJNS)
REAL PRJINS (M, M)

NUM = MINO(M,7)
WRITE (6,1000)
WRITE (6,1010)
WRITE (6,1020)
DO 100 K = 1, M
WRITE (6,1030) K, (PRJNS(X,J),J=1,NUM)
100  CONTINUE

1000  FORMAT(1HO,’PROJECTIONS OF COLUMN-POINTS FOLLOW.’,/)

1010  FDRMAT
X (’ VBLE. PROJ-1 PR0OJ-2 PROJ-3 PR0OJ-4 PROJ-5 PROJ-6
X PROJ-7°)

1020  FORMAT
X () __________________________________________

1030  FORMAT(I5,2X,7F8.4)
RETURN
END
[ 2 i e e
C
C Form projections of row-points on first 7 principal components.

SUBROUTINE PROJX(N,M,DATA,EVEC,VEC)
REAL DATA(N,M), EVEC(M,M), VEC(M)

NUM = MINO(M,T7)

DO 300 K =1, N
DO 5O L =1, M
VEC(L) = DATA(K,L)
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50 CONTINUE
DO 200 I = 1, NUM
DATA(X,I) = 0.0
DO 100 J = 1, M

DATA(K,I) = DATA(K,I) + VEC(J) *

X EVEC(J,M-I+1)
100 CONTINUE
200 CONTINUE
300 CONTINUE
c
RETURN
END

L L o
¢
C Determine projections of column-points on 7 prin. components.

c ______________________________________________________________
SUBROUTINE PROJY(M,EVALS,A,Z,VEC)
REAL EVALS(M), A(M,M), Z(M,M), VEC(M)
c
NUM = MINO(M,7)
DO 300 J1 =1, M
DOBOL =1, M
VEC(L) = A(J1,L)
50 CONTINUE
DO 200 J2 = 1, NUM
A(J1,J2) = 0.0
DO 100 J3 =1, M
A(J1,J2) = A(J1,J2) + VEC(J3)*Z(J3,M-J2+1)
100 CONTINUE
IF (EVALS(M-J2+1).GT.0.00005) A(J1,J2) =
X A(J1,J2)/SQRT(EVALS (M-J2+1))
IF (EVALS(M-J2+1).LE.0.00005) A(J1,J2) = 0.0
200 CONTINUE
300 CONTINUE
c

RETURN
END
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2.4.3 Input Data

The following is the input data set used (Adorf, 1986). It represents a set of
representative spectral intensity values versus wavelength for 18 main sequence
stars. The reference spectra are of type O, B3, B5, B8, A0, A5, F0, F5, GO,
G5, K0, K3, K5, K7, M0, M2, M4, and M5. More intensity values were initially
present for each star, but in order to arrive at features of relevance the values at
the beginning, end and middle of the wavelength range 350-530 nm were taken.
The subsets of the original spectra, thus defined, encompassed the essential
characteristics of downward sloping spectra being associated with O and B stars,
and generally upward sloping spectra associated with K and M stars. The data
used here have in total 16 intensity values, for each star.

INPUT DATA SET: STARS

Seq.no. Col.1 Col.2 Col.3 Col.4
1 3.00000 3.00000 3.00000 3.00000
2 3.50000 3.50000 4.00000 4.00000
3 4.00000 4.00000 4.50000 4.50000
4 5.00000 5.00000 5.00000 5.50000
5 6.00000 6.00000 6.00000 6.00000
6 11.0000 11.0000 11.0000 11.0000
7 20.0000 20.0000 20.0000 20.0000
8 30.0000 30.0000 30.0000 30.0000
9 30.0000 33.4000 36.8000 40.0000

10 42.0000 44.0000 46.0000 48.0000
11 60.0000 61.7000 63.5000 65.5000
12 70.0000 70.1000 70.2000 70.3000
13 78.0000 77.6000 77.2000 76.8000
14 98.9000 97.8000 96.7000 95.5000
15 160.000 157.000 155.000 152.000
16 272.000 266.000 260.000 254,000
17 382.000 372.000 362.000 352.000
18 770.000 740.000 710.000 680.000

Seq.no. Col.5 Col.6 Col.7 Col.8
1 3.00000 3.00000 35.0000 45.0000
2 4.50000 4.50000 46.0000 59.0000
3 5.00000 5.00000 48.0000 60.0000
4 5.50000 5.50000 46.0000 63.0000
5 6.50000 6.50000 51.0000 69.0000
6 11.0000 11.0000 64.0000 75.0000
7 20.0000 20.0000 76.0000 86.0000
8 30.1000 30.2000 84.0000 96.0000
9 43.0000 45.6000 100.000 106.000

10 50.0000 51.0000 109.000 111.000
11 67.3000 69.2000 122.000 124.000
12 70.4000 70.5000 137.000 132.000
13 76.4000 76.0000 167.000 159.000
14 94.3000 93.2000 183.000 172.000
15 149.000 147.000 186.000 175.000

16 248.000 242.000 192.000 182.000
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17
18

Seq.no.

0 ~N OO P WN -

e e el el
0 ~NO O WN - O

Seq.no.

0 N O WN -

©

10
11
12
13
14
15
16
17
18

343
650

Co

53.
63.
68.
70.
7.
81.
93.
98.

106.
110.
124.
134.
152.
162.
165.
170.
178.
195.

Co

113.
126.
123.
119.
122.
114.
104.
102.

98.
95.
92.
90.
87.
85.
84.
85.
84.
80.

.000
.000

1.9

0000
0000
0000
0000
0000
0000
0000
0000
000
000
000
000
000
000
000
000
000
000

1.13

000
000
000
000
000
000
500
000
0000
5000
5000
2000
7000
3000
9000
8000
0000
2000

333
618

Co

55.
58.
65.
64.
70.
79.
92.
99.

108.
110.
121.
128.
144.
152,
156.
159.
166.
180.

Co

86.

110.
117.
115.
122.
113.
107.

99.
99.
95.
92.
88.
85.
83.
82.
83.
82.
7.

.000
.000

1.10

0000
0000
0000
0000
0000
0000
0000
0000
000
000
000
000
000
000
000
000
000
000

1.14

0000
000
000
000
000
000
000
0000
0000
0000
2000
8000
7000
3000
8000
7000
0000
7000

2.4.4 Sample Output

The following is the output which is produced. The “linearity” of the data
may be noted. The eigenvalues (percentages of variance explained by axes)

are followed by the definition of the eigenvectors (principal components) in the
parameter—space. Then the projections of the objects (rows) and of the param-
eters (columns) on the new principal components in the respective spaces are

listed.

EIGENVALUES FOLLOW.

Eigenvalues

As Percent

ages

205
226

Co

58.
58.
65.
63.
1.
79.
91.
96.

101.
103.
103.
101.
103.
102.
120.
131.
138.
160.

Co

67.
78.
87.
97.
96.
98.
97.
94.
95.
92.
90.
87.
83.
81.
80.
81.
79.
75.

Cumul. Percentages

.000
.000

1.11

0000
0000
0000
0000
0000
0000
0000
0000
000
000
000
000
000
000
000
000
000
000

1.15

0000
0000
0000
0000
0000
0000
5000
0000
0000
5000
0000
3000
7000
3000
8000
6000
8000
2000

192
207

Co

113.
125.
123.
116.
120.
112.
104.
101.

99.
95.
93.
91.
89.
87.
87.
88.
86.
82.

Co

90.
97.
108
112
123
115
104
99.
95.
92.
90.
85.
81.
79.
79.
79.
TT.
72.

.000
.000

1.12

000
000
000
000
000
000
000
000
0000
5000
2000
7000
8000
5000
0000
0000
2000
9000

1.16

0000
0000
.000
.000
.000
.000
.000
0000
0000
0000
8000
8000
8000
3000
0000
6000
5000
7000
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12.7566 79.7285 79.7285
1.8521 11.5756 91.3041
1.1516 7.1975 98.5016
0.1762 1.1009 99.6026
0.0356 0.2226 99.82561
0.0225 0.1406 99.9658
0.0035 0.0219 99.9877
0.0007 0.0044 99.9921
0.0005 0.0033 99.99565
0.0004 0.0027 99.9982
0.0002 0.0015 99.9997
0.0001 0.0003 100.0000
0.0000 0.0000 100.0000
0.0000 0.0000 100.0000
0.0000 0.0000 100.0000
0.0000 0.0000 100.0000

EIGENVECTORS FOLLOW.

1 0.2525 -0.3156 0.0281 0.0621 0.0475 0.1261 -0.0736
2 0.2534 -0.3105 0.0294 0.0623 0.0362 0.1088 -0.0493
3 0.2544 -0.3049 0.0305 0.0609 0.0215 0.0877 -0.0269
4 0.2565 -0.2990 0.0321 0.0613 0.0087 0.0700 0.0050
5 0.2565 -0.2927 0.0336 0.0594 -0.0065 0.0441 0.0374
6 0.2578 -0.2847 0.0350 0.0558 -0.0189 0.0144 0.0809
7 0.2678 0.1684 0.0717 -0.3855 0.0350 0.0712 0.1288
8 0.2665 0.1671 0.1065 -0.4025 0.0352 0.0189 0.4010
9 0.2663 0.1668 0.1267 -0.3752 0.1033 0.0802 -0.0830
10 0.2649 0.2000 0.1322 -0.2432 0.0217 -0.0583 -0.2050
11 0.2673 0.0493 0.2252 0.1838 -0.3041 -0.8467 0.0563
12 -0.2457 -0.3228 -0.1133 -0.3296 -0.2382 -0.1378 0.1235
13 -0.2489 -0.3182 -0.0784 -0.2706 -0.1544 -0.0606 0.5661
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PROJECTIONS OF ROW-POINTS FOLLOW.

0BJECT PROJ-1 PROJ-2 PR0OJ-3 PROJ-4 PROJ-5 PR0OJ-6 PROJ-7
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10
11
12
13
14
15
16
17
18

-0.4970 0.0263 0.2529 0.0898 -0.0213 -0.0022 -0.0215
-0.3373 0.1036 0.1385 0.1198 -0.0116 -0.0237 0.0167
-0.2170 0.1691 0.1792 0.1023 -0.0577 -0.0124 0.0002
-0.1077 0.2188 0.1092 0.1223 -0.0405 -0.0122 0.0004
0.0436 0.2570 0.0727 0.0736 0.0053 -0.0017 -0.0114
0.1606 0.3222 -0.0115 0.0371 0.0000 0.0322 -0.0155
0.3541 0.4244 -0.0727 -0.0862 0.0142 0.0312 -0.0009
0.4994 0.4539 -0.1191 -0.1304 0.0388 0.0573 -0.0051
0.6883 0.3365 -0.0761 -0.0903 0.0066 -0.0375 -0.0005
0.9433 0.0842 0.0061 -0.0685 -0.0123 -0.0485 0.0190
1.2669 -0.1027 0.0096 -0.0507 -0.0062 -0.0298 0.0150
2.1896 -0.8174 0.0333 0.0796 0.0053 0.0314 -0.0117

PROJECTIONS OF COLUMN-POINTS FOLLOW.

W ~NO U WN -

©

10
11
12
13
14
15
16

PROJ-1 PROJ-2 PR0OJ-3 PR0OJ-4 PR0OJ-5 PR0OJ-6 PR0OJ-7

0.3607 -0.0612 0.0033 0.0011 0.0002 0.0003 0.0000
0.3621 -0.0602 0.0034 0.0011 0.0001 0.0002 0.0000
0.3635 -0.0591 0.0035 0.0011 0.0001 0.0002 0.0000
0.3650 -0.0579 0.0037 0.0011 0.0000 0.0002 0.0000
0.3664 -0.0567 0.0039 0.0010 0.0000 0.0001 0.0000
0.3683 -0.0552 0.0041 0.0010 -0.0001 0.0000 0.0000
0.3826 0.0326 0.0083 -0.0068 0.0001 0.0002 0.0000
0.3807 0.0324 0.0124 -0.0071 0.0001 0.0000 0.0001
0.3804 0.0323 0.0147 -0.0066 0.0004 0.0002 0.0000
0.3784 0.0388 0.0153 -0.0043 0.0001 -0.0001 -0.0001
0.3819 0.0096 0.0261 0.0032 -0.0011 -0.0019 0.0000
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2.4.5 Java Application

51

For some core functionality, we use mathematical class libraries available from
Visual Numerics. Therefore this must be on your system before you use the
following program. Of course the Java Development Kit, JDK, must also be
available. We used version 1.1.6 of the JDK.

import
import

publ
{

ic

//
1/
//

//
1/

1/
1/
//

VisualNumerics.math.*;
java.text.*;

class PCA

This class carries out a PCA with standardization of the
inputs (i.e. PCA on correlations), with hardwiring of the
input data, and with output to standard output of results.

The VisualNumerics.math.* classes, in particular DoubleMatrix
and DoubleSVD, are used.

Reference: for Visual Numerics classes, http://www.vni.com
For everything else, Chapter 8 of Richard Davies, Introductory
Java for Scientists and Engineers, Addison-Wesley, 1999.
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// Coded by F. Murtagh, July 1999.

// Methods used in this class:

// RowProj, for determining row projections

// ColProj, for determining column projections
// printMatrix, for printing a matrix

// printVect, for printing a vector

// DoubleVector.sum, sum of vectors

// DoubleVector.multiply, multiply vector by scalar
// DoubleMatrix.multiply, matrix multiplication
// DoubleMatrix.transpose, matrix transpose

// system.out.print

// system.out.println

// Method for standardizing the input data

public static double[][] Standardize(int nrow, int ncol, double[][] A)
{

double[] colmeans = new doublel[ncol];

double[] colstdevs = new double[ncol];

// Adat will contain the standardized data and will be returned
double[][] Adat = new double[nrow] [ncoll;

double[] tempcol = new double[nrow];

// Determine means and standard deviations of variables/columns
for (int j=0; j<ncol; j++)

{
for (int i=0; i<nrow; i++)
{
tempcol[i] = A[i]l[j];
¥

colmeans[j] = Statistics.average(tempcol);
// Sample stddev = sqrt((\sum_i(x_i - \bar{x})"2)/(n-1))
colstdevs[j] = Statistics.standardDeviation(tempcol);
}
System.out.println("Variable means:");
printVect(colmeans);
System.out.println("Variable standard deviations:");
printVect(colstdevs);

// Now ceter to zero mean, and reduce to unit standard deviation
for (int j=0; j<ncol; j++)

{
for (int i=0; i<nrow; i++)
{
Adat[i]1[j] = (A[i]l[j] - colmeans[j])/colstdevs[j];
}
}
return Adat;
}
R
R

// Method for determining row projections

// From SVD decomposition, here we want product: A U

public static double[][] RowProj(double[][] evecs, double[][] dat)
{

double[][] rproj = DoubleMatrix.multiply(dat, evecs);

return rproj;
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// Method for determining column projections
// From SVD decomposition, here we want: Corr U with colwise div by
// sqrt(lambda)
public static double[][] ColProj(int ni, int n2,
double[][] evecs,
double[][] cdat,
double[] evals)
{
double[][] cproj = DoubleMatrix.multiply(cdat,evecs);

// Rescale by eigenvalues
for (int j1=0; ji<n2; ji++)

for (int j2=0; j2<n2; j2++)
{
cproj[j11[j2] = cproj[j1]1[j2]1/Math.sqrt(evals[j2]);
}

return cproj;

// Little method for helping in output formating
public static String getSpaces(int n) {

StringBuffer sb = new StringBuffer(n);
for (int i = 0; i < n; i++) sb.append(’ ’);
return sb.toString();

// Utility for printing a matrix
public static void printMatrix(int nl, int n2, double[][] m)
{

// Some definitions for handling output formating

NumberFormat myFormat = NumberFormat.getNumberInstance();
FieldPosition fp = new FieldPosition(NumberFormat.INTEGER_FIELD);
myFormat.setMaximumIntegerDigits(4);
myFormat.setMaximumFractionDigits(4);
myFormat.setMinimumFractionDigits (4);

for (int i=0; i<nl; i++)

// Print each row, elements separated by spaces
for (int j=0; j<n2; j++)

// Following unfortunately doesn’t format at all

System.out.print(m[i] [j1 + " ");
{
String valString = myFormat.format(

m[i] [j1, new StringBuffer(), fp).toString();
valString = getSpaces(4 - fp.getEndIndex()) + valString;
System.out.print(valString);

}
// Start a new line at the end of a row
System.out.println();
}
// Leave a gap after the entire matrix
System.out.println();
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// Utility for printing a vector

public static void printVect(double[] m)

{

// Some definitions for handling output formating

NumberFormat myFormat = NumberFormat.getNumberInstance();
FieldPosition fp = new FieldPosition(NumberFormat.INTEGER_FIELD);
myFormat .setMaximumIntegerDigits(4);
myFormat.setMaximumFractionDigits(4);
myFormat.setMinimumFractionDigits(4);
int len = m.length;
for (int i=0; i<len; i++)

// Following would be nice, but doesn’t format adequately
// System.out.print(m[i] + " ");
String valString = myFormat.format(
m[i], new StringBuffer(), fp).toString();
valString = getSpaces(3 - fp.getEndIndex()) + valString;
System.out.print(valString);
}
// Start a new line at the row end
System.out.println();
// Leave a gap after the entire vector
System.out.println();

// The main method contains the body of the program
public static void main(String[] argv)

{

// Define dimensions of the matrix we’ll use
int nrow = 18;
int ncol = 16;

// Define the matrix that we are going to use
double[][] A = {

{ 3.0, 3.0, 3.0, 3.0, 3.0, 3.0, 35.0, 45.0,
53.0, 55.0, 58.0, 113.0, 113.0, 86.0, 67.0, 90.0%},
{ 3.5, 3.5, 4.0, 4.0, 4.5, 4.5, 46.0, 59.0,
63.0, 58.0, 58.0, 125.0, 126.0, 110.0, 78.0, 97.0%},
{ 4.0, 4.0, 4.5, 4.5, 5.0, 5.0, 48.0, 60.0,
68.0, 65.0, 65.0, 123.0, 123.0, 117.0, 87.0, 108.0},
{ 5.0, 5.0, 5.0, 5.5, 5.5, 5.5, 46.0, 63.0,
70.0, 64.0, 63.0, 116.0, 119.0, 115.0, 97.0, 112.0},
{ 6.0, 6.0, 6.0, 6.0, 6.5, 6.5, 51.0, 69.0,
77.0, 70.0, 71.0, 120.0, 122.0, 122.0, 96.0, 123.0},
{ 1.0, 1t1.0, 11.0, 11.0, 11.0, 11.0, 64.0, 75.0,
81.0, 79.0, 79.0, 112.0, 114.0, 113.0, 98.0, 115.0},
{ 20.0, 20.0, 20.0, 20.0, 20.0, 20.0, 76.0, 86.0,
93.0, 92.0, 91.0, 104.0, 104.5, 107.0, 97.5, 104.0},
{ 30.0, 30.0, 30.0, 30.0, 30.1, 30.2, 84.0, 96.0,
98.0, 99.0, 96.0, 101.0, 102.0, 99.0, 94.0, 99.0%},
{ 30.0, 33.4, 36.8, 40.0, 43.0, 45.6, 100.0, 106.0,
106.0, 108.0, 101.0, 99.0, 98.0, 99.0, 95.0, 95.0},
{ 42.0, 44.0, 46.0, 48.0, 50.0, 51.0, 109.0, 111.0,
110.0, 110.0, 103.0, 95.5, 95.5, 95.0, 92.5, 92.0},
{ 60.0, 61.7, 63.5, 65.5, 67.3, 69.2, 122.0, 124.0,
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124.0, 121.0, 103.0, 93.2, 92.5, 92.2, 90.0, 90.8},
{ 70.0, 70.1, 70.2, 70.3, 70.4, 70.5, 137.0, 132.0,
134.0, 128.0, 101.0, 91.7, 90.2, 88.8, 87.3, 85.8%},
{ 78.0, 77.6, 77.2, 76.8, 76.4, 76.0, 167.0, 159.0,
152.0, 144.0, 103.0, 89.8, 87.7, 85.7, 83.7, 81.8%},
{ 98.9, 97.8, 96.7, 95.5, 94.3, 93.2, 183.0, 172.0,
162.0, 152.0, 102.0, 87.5, 85.3, 83.3, 81.3, 79.3},
{ 160.0, 157.0, 155.0, 152.0, 149.0, 147.0, 186.0, 175.0,
165.0, 156.0, 120.0, 87.0, 84.9, 82.8, 80.8, 79.0%},
{ 272.0, 266.0, 260.0, 254.0, 248.0, 242.0, 192.0, 182.0,
170.0, 159.0, 131.0, 88.0, 85.8, 83.7, 81.6, 79.6%},
{ 382.0, 372.0, 362.0, 352.0, 343.0, 333.0, 205.0, 192.0,
178.0, 166.0, 138.0, 86.2, 84.0, 82.0, 79.8, 77.5%},
{ 770.0, 740.0, 710.0, 680.0, 650.0, 618.0, 226.0, 207.0,
195.0, 180.0, 160.0, 82.9, 80.2, 77.7, 75.2, 72.7}
};

// Print it out
System.out.println("A is our input matrix:");
printMatrix(nrow, ncol, A);

// Standardize the input matrix

double[][] Adat = Standardize(nrow, ncol, A);

// Print it out

System.out.println("Standardized matrix for analysis:");
printMatrix(nrow, ncol, Adat);

// Determine correlations
double[J[] Corr = DoubleMatrix.multiply(
DoubleMatrix.transpose(Adat), Adat);

// Perform the SVD
DoubleSVD svdres = new DoubleSVD(Corr);

System.out.println("Eigenvalues:");
printVect(svdres.S(Q));

// Sum of eigenvalues, then percentage variances

// We use methods sum and multiply from class DoubleVector from JNL
double tot = DoubleVector.sum(svdres.S());

tot = 1.0/tot;

double[] percentvar = DoubleVector.multiply(tot, svdres.S());
percentvar = DoubleVector.multiply(100.0, percentvar);

System.out.println("Percentage variances:");
printVect(percentvar);
System.out.println();

System.out.println("Eigenvectors:");

System.out.println("Number of variables (rows) x Dimensionality (cols)");
System.out.println("Columns = definitions of new axes in terms of old variables");
System.out.println("Col 1 = new axis 1, etc.");

printMatrix(ncol, ncol, svdres.U());

// Right singular vectors are the same in this case
// System.out.println("Right eigenvectors, column principal components:");
// printMatrix(ncol, ncol, svdres.V());

System.out.println("Row projections:");
System.out.println("Rows: objl, obj2, ..., objn");
System.out.println("Columns: projil, proj2, ..., projm");
double[][] rproj = RowProj(svdres.U(), Adat);
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printMatrix(nrow, ncol, rproj);

System.out.println("Column projections:");

System.out.println("Rows on output: (0ld)Vbel, (01ld)Vbe2,..., (01d)Vbem");
System.out.println("Columns on output: projl, proj2, ..., projm");
double[][] cproj = ColProj(nrow, ncol, svdres.V(), Corr, svdres.S());
printMatrix(ncol, ncol, cproj);

// Some remarks on comparison of results with MDA, F Murtagh and
// A Heck, Multivariate Data Analysis, Kluwer, 1987, Chapter 2.

// Due to eigenvalues being different, we have projections
// which are rescaled compared to MDA.

//
// In MDA, std. dev. is calculated as

// sart{ \sum_i (x_i - \bar{x})"2 } (Cf. p. 37)

// In our program, std. dev. is
// sqrt(\frac{\sum_i (x_i - \bar{x})"2}{n-1}),

// sample standard deviation.

// Implications:

// Eigenvectors are *exactly* the same.

// Standardized array is within a constant (but n-related) factor.
// Row projections are therefore also to within this factor.

// For the spectral dataset given in MDA, here these values are
// all about 4.1 times greater (i.e. sqrt(n-1) = sqrt(17)).

// Eigenvalues are different in value, though percentages are ident.
// Eigenvalues for spect.dat:

// 216.86, 31.48, 19.57, etc. here.

// 12.75, 1.85, 1.15, etc. in MDA case.

// Percentages are identical as mentioned

Byte code is created for this program, PCA.java, by the command: javac
PCA.java. The program is then run as follows: java PCA.



Chapter 3

Cluster Analysis

3.1 The Problem

Automatic classification algorithms are used in widely different fields in order
to provide a description or a reduction of data. A clustering algorithm is used to
determine the inherent or natural groupings in the data, or provide a convenient
summarization of the data into groups. Although the term “classification” is
often applied both to this area and to Discriminant Analysis, this chapter will
be solely concerned with unsupervised clustering, with no prior knowledge on
the part of the analyst regarding group memberships.

As is the case with Principal Components Analysis, and with most other
multivariate techniques, the objects to be classified have numerical measure-
ments on a set of variables or attributes. Hence, the analysis is carried out on
the rows of an array or matrix. If we have not a matrix of numerical values, to
begin with, then it may be necessary to skilfully construct such a matrix. Chap-
ter 1, in particular, can be referred to here for difficulties arising when missing
data or qualitative attributes are present. The objects, or rows of the matrix,
can be viewed as vectors in a multidimensional space (the dimensionality of this
space being the number of variables or columns). A geometric framework of this
type is not the only one which can be used to formulate clustering algorithms;
it is the preferred one in this chapter because of its generality and flexibility.

Needless to say, a clustering analysis can just as easily be implemented on
the columns of a data matrix. There is usually no direct relationship between
the clustering of the rows and clustering of the columns, as was the case for the
dual spaces in Principal Components Analysis. It may also be remarked that
suitable alternative forms of storage of a rectangular array of values are not
inconsistent with viewing the problem in geometric (and in matrix) terms: in
the case of large sparse matrices, for instance, suitable storage schemes require
consideration in practice.

Motivation for clustering may be categorized under the following headings,
the first two of which will be of principal interest in this chapter:

1. Analysis of data: here, the given data is to be analyzed in order to reveal
its fundamental features. The significant interrelationships present in the
data are sought. This is the multivariate statistical use of clustering, and

35
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the validity problem (i.e. the validation of clusters of data items produced
by an algorithm) is widely seen as a major current difficulty.

2. User convenience: a synoptic classification is to be obtained which will
present a useful decomposition of the data. This may be a first step
towards subsequent analysis where the emphasis is on heuristics for sum-
marizing information. Appraisal of clustering algorithms used for this
purpose can include algorithmic efficiency and ease of use.

3. Storage and retrieval: we are here concerned with improving access speeds
by providing better routing strategies to stored information. The effec-
tiveness of the clustering is measured by time and space efficiency, and by
external criteria (related, for example, to the amount of relevant material
retrieved).

4. Machine vision: the distinguishing of point patterns, or the processing of
digital image data, is often assessed visually, and computational efficiency
is highly important also.

Applications of clustering embrace many diverse fields (establishing tax-
onomies in biology and ecology; efficient retrieval algorithms in computer and
information science; grouping of test subjects and of the test items in psychology
and educational research; and so on). The range of algorithms which have been
proposed (for the most part since the early 1960s with the advent of computing
power on a wide scale) has been correspondingly large.

3.2 Mathematical Description

3.2.1 Introduction

Most published work in Cluster Analysis involves the use of either of two classes
of clustering algorithm: hierarchical or non—hierarchical (often partitioning) al-
gorithms. Hierarchical algorithms in particular have been dominant in the
literature and so this chapter concentrates on these methods (Sections 3.2.2,
3.2.3). Each of the many clustering methods — and of the many hierarchical
methods — which have been proposed over the last two decades have possi-
bly advantageous properties. Many textbooks catalogue these methods, which
makes the task facing the practitioner of choosing the right method an onerous
one. We feel that it is more helpful instead to study a method which is rec-
ommendable for general purpose applications. This we do with the minimum
variance method.

Sections 3.2.4 and 3.2.5 will focus on Ward’s minimum variance method.
For most applications this method can be usefully employed for the summa-
rization of data. Section 3.2.4 will attempt to justify this statement: it will
informally describe the minimum variance agglomerative method, and will look
at properties of this method which are of practical importance. Mathematical
properties of the minimum variance method are then detailed in Section 3.2.5.

Finally, non—hierarchical routines have also been widely implemented. Sec-
tion 3.2.6 looks at the minimal spanning tree (closely related to the single linkage
hierarchical method). Finally, Section 3.2.7 briefly describes partitioning meth-
ods.
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3.2.2 Hierarchical Methods

The single linkage hierarchical clustering approach outputs a set of clusters
(to use graph theoretic terminology, a set of maximal connected subgraphs)
at each level — or for each threshold value which produces a new partition.
The following algorithm, in its general structure, is relevant for a wide range
of hierarchical clustering methods which vary only in the update formula used
in Step 2. These methods may, for example, define a criterion of compactness
in Step 2 to be used instead of the connectivity criterion used here. Such
hierarchical methods will be studied in Section 3.2.3, but the single linkage
method with which we begin is one of the oldest and most widely used methods
(its usage is usually traced to the early 1950s). An example is shown in Figure
3.1 — note that the dissimilarity coefficient is assumed to be symmetric, and so
the clustering algorithm is implemented on half the dissimilarity matrix.

Single linkage hierarchical clustering
Input An n(n —1)/2 set of dissimilarities.
Step 1 Determine the smallest dissimilarity, d;;.

Step 2 Agglomerate objects ¢ and k: i.e. replace them with a new object, i1Uk;
update dissimilarities such that, for all objects j # i, k:

divk,j = min {d;j, dk; }-
Delete dissimilarities d;; and dy;, for all j, as these are no longer used.

Step 3 While at least two objects remain, return to Step 1.

Equal dissimilarities may be treated in an arbitrary order. There are pre-
cisely n — 1 agglomerations in Step 2 (allowing for arbitrary choices in Step 1
if there are identical dissimilarities). It may be convenient to index the clusters
found in Step 2 by n+1,n+2, ..., 2n—1, or an alternative practice is to index
cluster i U k by the lower of the indices of i and k.

The title single linkage arises since, in Step 2, the interconnecting dissimi-
larity between two clusters (i U k and j) or components is defined as the least
interconnecting dissimilarity between a member of one and a member of the
other. Other hierarchical clustering methods are characterized by other func-
tions of the interconnecting linkage dissimilarities.

Since there are n — 1 agglomerations, and hence iterations, and since Step 2
requires < n operations, the algorithm for the single linkage hierarchic clustering
given above is of time complexity O(n?).

Compared to other hierarchic clustering techniques, the single linkage method
can give rise to a notable disadvantage for summarizing interrelationships. This
is known as chaining. An example is to consider four subject—areas, which
it will be supposed are characterized by certain attributes: computer science,
statistics, probability, and measure theory. It is quite conceivable that “com-
puter science” is connected to “statistics” at some threshold value, “statistics”
to “probability”, and “probability” to “measure theory”, thereby giving rise to



98

CHAPTER 3. CLUSTER ANALYSIS
1 2 3 4 5 1 204 3 5
__+ __________________ + ________________
110 4 9 5 8 1 10 4 9 8
214 0 6 3 6 204 | 4 0 6 b5
319 6 0 6 3 3 19 6 0 3
415 3 6 0 b5 5 | 8 5 3 0
518 6 3 5 0
Agglomerate 2 and 4 at Agglomerate 3 and 5 at
dissimilarity 3 dissimilarity 3
1 204 3U5 10204 3U5
____+ _____________________ + _____________
11 0 4 8 iv2u04 | O 5
204 | 4 0 5 3U6 | b 0
305 | 8 5 0
Agglomerate 1 and 2U4 at Finally agglomerate 1U2U4
dissimilarity 4 and 3U5 at dissimilarity 5

Resulting dendrogram

e + .4 . 5
| |

o + | 3. 4
| | |

| | ot e 2 3
I | | |

| ===+ 1...3
| | | | |

| | | | | - 0...0

Ranks Criterion

or values
levels (linkage
weights)

Figure 3.1: Construction of a dendrogram by the single linkage method.
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the fact that “computer science” and “measure theory” find themselves, unde-
sirably, in the same cluster. This is due to the intermediaries “statistics” and
“probability”.

We will turn attention now to the general role played by a dendrogram,
constructed by any criterion (Figure 3.2 illustrates differing possible represen-
tations).

About 75% of all published work on clustering has employed hierarchical
algorithms (according to Blashfield and Aldenderfer, 1978): this figure for pub-
lished work might or might not hold for practical clustering usage, but it is
nonetheless revealing. Interpretation of the information contained in a dendro-
gram will often be of one or more of the following kinds:

— set inclusion relationships,
— partition of the object—sets, and
— significant clusters.

We will briefly examine what each of these entail.

Much early work on hierarchic clustering was in the field of biological taxon-
omy, from the 1950s and more so from the 1960s onwards. The central reference
in this area, the first edition of which dates from the early 1960s, is Sneath and
Sokal (1973). One major interpretation of hierarchies has been the evolution
relationships between the organisms under study. It is hoped, in this context,
that a dendrogram provides a sufficiently accurate model of underlying evolu-
tionary progression. As an example, consider the hierarchical classification of
galaxies based on certain features. It could be attempted to characterize clus-
ters at higher levels of the tree as being major spiral and elliptical groups, to
which other subclasses are related.

The most common interpretation made of hierarchic clustering is to derive
a partition: a line is drawn horizontally through the hierarchy, to yield a set of
classes. These clusters are precisely the connected components in the case of
the single linkage method. A line drawn just above rank 3 (or criterion value
4) on the dendrogram in Figure 3.1 yields classes {1,2,4} and {3,5}. Generally
the choice of where “to draw the line” is arrived at on the basis of large changes
in the criterion value. However the changes in criterion value increase (usually)
towards the final set of agglomerations, which renders the choice of best partition
on this basis difficult. Since every line drawn through the dendrogram defines
a partition, it may be expedient to choose a partition with convenient features
(number of classes, number of objects per class).

A final type of interpretation, less common than the foregoing, is to dis-
pense with the requirement that the classes chosen constitute a partition, and
instead detect maximal (i.e. disjoint) clusters of interest at varying levels of the
hierarchy. Such an approach is used by Rapoport and Fillenbaum (1972) in a
clustering of colours based on semantic attributes.

In summary, a dendrogram provides a résumé of many of the proximity and
classificatory relationships in a body of data. It is a convenient representa-
tion which answers such questions as: “How many groups are in this data?”,
“What are the salient interrelationships present?”. But it should be stressed
that differing answers can feasibly be provided by a dendrogram for most of
these questions, just as different human observers would also arrive at different
conclusions.
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3.2.3 Agglomerative Algorithms

In the last section, a general agglomerative algorithm was discussed. A wide
range of these algorithms have been proposed at one time or another. Hierarchic
agglomerative algorithms may be conveniently broken down into two groups of
methods. The first group is that of linkage methods — the single, complete,
weighted and unweighted average linkage methods. These are methods for
which a graph representation can be used. Figure 3.3 shows the close relation-
ship between the single linkage hierarchy and the minimal spanning tree; we
see that the single linkage dendrogram can be constructed by first sorting the
dissimilarities into ascending order; and that in some cases, e.g. in going from
dpe t0 dgye, there is no change in the dendrogram and information which is irrel-
evant to the minimal spanning tree is ignored. Sneath and Sokal (1973) may be
consulted for many other graph representations of the stages in the construction
of hierarchic clusterings.

The second group of hierarchic clustering methods are methods which allow
the cluster centres to be specified (as an average or a weighted average of the
member vectors of the cluster). These methods include the centroid, median
and minimum variance methods.

The latter may be specified either in terms of dissimilarities, alone, or al-
ternatively in terms of cluster centre coordinates and dissimilarities. A very
convenient formulation, in dissimilarity terms, which embraces all the hierar-
chical methods mentioned so far, is the Lance—Williams dissimilarity update
formula. If points (objects) i and j are agglomerated into cluster ¢ U j, then
we must simply specify the new dissimilarity between the cluster and all other
points (objects or clusters). The formula is:

d(i U j, k) = aid(i, k) + od(j, k) + Bd(i, j) + v | d(i, k) — d(5, k) |

where a;, aj, 3, and v define the agglomerative criterion. Values of these are
listed in the second column of Table 3.1. In the case of the single link method,
using o; = aj = %, =0, and y = — 1 gives us

AU k) = 5l ) + 3dG, k) — 3 | di, k) — d(G,R)|

which, it may be verified by taking a few simple examples of three points, i, 7,
and k, can be rewritten as

d(i U j, k) = min {d(i, k), d(j, k)}.

This was exactly the update formula used in the agglomerative algorithm
given in the previous Section. Using other update formulas, as given in Column
2 of Table 3.1, allows the other agglomerative methods to be implemented in a
very similar way to the implementation of the single link method.

In the case of the methods which use cluster centres, we have the centre
coordinates (in Column 3 of Table 3.1) and dissimilarities as defined between
cluster centres (Column 4 of Table 3.1). The Euclidean distance must be used,
initially, for equivalence between the two approaches. In the case of the median
method, for instance, we have the following (cf. Table 3.1).

Let a and b be two points (i.e. m—dimensional vectors: these are objects
or cluster centres) which have been agglomerated, and let ¢ be another point.
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Hierarchical
clustering
methods (and
aliases).

Lance and Williams
dissimilarity
update formula.

Coordinates

of centre of
cluster, which
agglomerates
clusters ¢ and j.

Dissimilarity
between cluster
centres g; and g;.

Single link
(nearest
neighbour).

OtiZO.E)
p=0
v=-0.5

(More simply:

Complete link
(diameter).

ai:O.S
p=0
v=0.5

(More simply:

Group average

max{dik, djk })

0 — i
= T

sum of squares.

(average link, B8=0
UPGMA). =0
McQuitty’s a; = 0.5
method B8=0
(WPGMA). v=0
Median method | a; = 0.5 g = % llg: — g;l?
(Gower’s, B8 =-0.25
WPGMC). v=0
Centroid o = \illi:\% .‘ g= ‘llﬁil‘él‘g] lg: — &;ll?
_ g

(UPGMC). B =~

7=0

) TR _ lilgi+lile; U] | — o+ |[2

Ward’s method | o; = \iIHJ‘\I:rIkI 8= "l \i|+J\j\ llg: — ;i
(minimum var- | 8= ~ A
iance, error vy=0

Notes: | i | is the number of objects in cluster i; g; is a vector in m-space (m
is the set of attributes), — either an intial point or a cluster centre; [|.|| is the
norm in the Euclidean metric; the names UPGMA, etc. are due to Sneath and
Sokal (1973); finally, the Lance and Williams recurrence formula is:

divj ke = iy + ajdjr + Bdij + | dig — dj. | -

Table 3.1: Specifications of seven hierarchical clustering methods.
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From the Lance-—Williams dissimilarity update formula, using squared Euclidean
distances, we have:

2 2 2
d*(aUb,c) = d (ém) + 4 (217,6) _d (Z,b)
la—e|l® | [b—c|® _ Jla-b]” (3.1)
= 5 t= 1
The new cluster centre is (a + b)/2, so that its distance to point c is
b
e - 22202 (32)

That these two expressions are identical is readily verified. The correspon-
dence between these two perspectives on the one agglomerative criterion is sim-
ilarly proved for the centroid and minimum variance methods.

The single linkage algorithm discussed in the last Section, duly modified for
the use of the Lance—Williams dissimilarity update formula, is applicable for all
agglomerative strategies. The update formula listed in Table 3.1 is used in Step
2 of the algorithm.

For cluster centre methods, and with suitable alterations for graph meth-
ods, the following algorithm is an alternative to the general dissimilarity based
algorithm (the latter may be described as a “stored dissimilarities approach”).

Stored data approach

Step 1 Examine all interpoint dissimilarities, and form cluster from two closest
points.

Step 2 Replace two points clustered by representative point (centre of gravity)
or by cluster fragment.

Step 3 Return to Step 1, treating clusters as well as remaining objects, until
all objects are in one cluster.

In Steps 1 and 2, “point” refers either to objects or clusters, both of which
are defined as vectors in the case of cluster centre methods. This algorithm is
justified by storage considerations, since we have O(n) storage required for n
initial objects and O(n) storage for the n — 1 (at most) clusters. In the case of
linkage methods, the term “fragment” in Step 2 refers (in the terminology of
graph theory) to a connected component in the case of the single link method
and to a clique or complete subgraph in the case of the complete link method.
The overall complexity of the above algorithm is O(n?): the repeated calculation
of dissimilarities in Step 1, coupled with O(n) iterations through Steps 1, 2 and
3. Note however that this does not take into consideration the extra processing
required in a linkage method, where “closest” in Step 1 is defined with respect
to graph fragments.

Recently some other very efficient improvements on this algorithm have been
proposed (for a survey, see Murtagh, 1985). In particular there is the Nearest
Neighbour (NN) chain algorithm. Here is a short description of this approach.

A NN-chain consists of an arbitrary point (a in Figure 3.4); followed by its
NN (b in Figure 3.4); followed by the NN from among the remaining points (c,
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Figure 3.4: Five points, showing NNs and RNNs.

d, and e in Figure 3.4) of this second point; and so on until we necessarily have
some pair of points which can be termed reciprocal or mutual NNs. (Such a
pair of RNNs may be the first two points in the chain; and we have assumed
that no two dissimilarities are equal.)

In constructing a NN—chain, irrespective of the starting point, we may ag-
glomerate a pair of RNNs as soon as they are found. What guarantees that
we can arrive at the same hierarchy as if we used the “stored dissimilarities”
or “stored data” algorithms described earlier in this section? Essentially this
is the same condition as that under which no inversions or reversals are pro-
duced by the clustering method. Figure 3.5 gives an example of this, where d
is agglomerated at a lower criterion value (i.e. dissimilarity) than was the case
at the previous agglomeration.

This is formulated as:

Inversion impossible if: d(i,j) < d(i, k) or d(j, k) = d(i,j) < d(iUj,k)

Using the Lance—Williams dissimilarity update formula, it can be shown that
the minimum variance method does not give rise to inversions; neither do the
linkage methods; but the median and centroid methods cannot be guaranteed
not to have inversions.

To return to Figure 3.4, if we are dealing with a clustering criterion which
precludes inversions, then ¢ and d can justifiably be agglomerated, since no other
point (for example, b or e) could have been agglomerated to either of these.

The processing required, following an agglomeration, is to update the NNs of
points such as b in Figure 3.4 (and on account of such points, this algorithm was
initially dubbed algorithme des célibataires when first proposed!). The following
is a summary of the algorithm:
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Figure 3.5: Alternative representations of a hierarchy with an inversion.

NN-chain algorithm
Step 1 Select a point arbitrarily.
Step 2 Grow the NN—chain from this point until a pair of RNNs are obtained.

Step 3 Agglomerate these points (replacing with a cluster point, or updating
the dissimilarity matrix).

Step 4 From the point which preceded the RNNs (or from any other arbitrary
point if the first two points chosen in Steps 1 and 2 constituted a pair of
RNNs), return to Step 2 until only one point remains.

3.2.4 Minimum Variance Method in Perspective

The next Section will review mathematical properties of the minimum vari-
ance method; in this Section we will informally motivate our preference for this
method. First, let us briefly review the overall perspective.

Agglomerative clustering methods have been motivated by graph theory
(leading to linkage—based methods) or by geometry (leading to cluster centre
methods). This is true for the more commonly used methods studied here. In
cluster centre methods, the cluster centre may be used for subsequent agglomer-
ations. Alternatively, inter—cluster dissimilarities may be used throughout, and
therefore these methods may be implemented using the Lance—Williams dissimi-
larity update formula (see Table 3.1) in an identical manner to the linkage—based
methods.

In order to specify an agglomerative criterion simultaneously in terms of
cluster mean vectors, and in terms of dissimilarity, it was also necessary to
adopt a particular dissimilarity (i.e. the Euclidean distance). Restricting the
choice of dissimilarity to this distance is not usually inconvenient in practice,
and a Euclidean space offers a well-known and powerful standpoint for analysis.
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The variance or spread of a set of points (i.e. the sum of squared distances
from the centre) has been the point of departure for specifying many clustering
algorithms. Many of these algorithms, — iterative, optimization algorithms
as well as the hierarchical, agglomerative algorithms — are briefly described
and appraised in Wishart (1969). The use of variance in a clustering criterion
links the resulting clustering to other data—analytic techniques which involve a
decomposition of variance. Principal Components Analysis, for example, which
has been studied in Chapter 2 seeks the principal directions of elongation of the
multidimensional points, i.e. the axes on which the projections of the points
have maximal variance. Using a clustering of the points with minimal variance
within clusters as the cluster criterion is, perhaps, the most suitable criterion for
two different but complimentary analyses of the same set of points. The reality
of clusters of projected points resulting from the Principal Components Analysis
may be assessed using the Cluster Analysis results; and the interpretation of
the axes of the former technique may be used to facilitate interpretation of the
clustering results.

The search for clusters of maximum homogeneity leads to the minimum vari-
ance criterion. Since no coordinate axis is privileged by the Euclidean distance,
the resulting clusters will be approximately hyperspherical. Such ball-shaped
clusters will therefore be very unsuitable for examining straggly patterns of
points. However, in the absence of information about such patterns in the data,
homogeneous clusters will provide the most useful condensation of the data.

The following properties make the minimum variance agglomerative strategy
particularly suitable for synoptic clustering:

1. As discussed in the Section to follow, the two properties of cluster homo-
geneity and cluster separability are incorporated in the cluster criterion.
For summarizing data, it is unlikely that more suitable criteria could be
devised.

2. Asin the case of other geometric strategies, the minimum variance method
defines a cluster centre of gravity. This mean set of cluster members’
coordinate values is the most useful summary of the cluster. It may also
be used for the fast selection and retrieval of data, by matching on these
cluster representative vectors rather than on each individual object vector.

3. A top—down hierarchy traversal algorithm may also be implemented for
information retrieval. Using a query vector, the left or right subtree is
selected at each node for continuation of the traversal (it is best to ensure
that each node has precisely two successor nodes in the construction of the
hierarchy). Such an algorithm will work best if all top—down traversals
through the hierarchy are of approximately equal length. This will be the
case if and only if the hierarchy is as “symmetric” or “balanced” as possible
(see Figure 3.6). Such a balanced hierarchy is usually of greatest interest
for interpretative purposes also: a partition, derived from a hierarchy, and
consisting of a large number of small classes, and one or a few large classes,
is less likely to be of practical use.

For such reasons, a “symmetric” hierarchy is desirable. It has been shown,
using a number of different measures of hierarchic symmetry, that the min-
imum variance (closely followed by the complete link) methods generally
give the most symmetric hierarchies (see Murtagh, 1984).
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Figure 3.6: Three binary hierarchies: balanced, unbalanced and intermediate.

4. Unlike other geometric agglomerative methods — in particular the cen-
troid and the median methods (see definitions, Table 3.1, above) — the
sequence of agglomerations in the minimum variance method is guaran-
teed not to allow inversions in the cluster criterion value. Inversions or
reversals (Figure 3.5) are inconvenient, and can make interpretation of the
hierarchy difficult.

5. Finally, computational performance has until recently favoured linkage
based agglomerative criteria, and in particular the single linkage method.
The computational advances described above for the minimum variance
method (principally the NN-chain algorithm) make it increasingly attrac-
tive for practical applications involving large amounts of data.

3.2.5 Minimum Variance Method: Mathematical Proper-
ties

The minimum variance method produces clusters which satisfy compactness and
isolation criteria. These criteria are incorporated into the dissimilarity, noted
in Table 3.1, as will now be shown.

In Ward’s method, we seek to agglomerate two clusters, ¢; and ¢, into
cluster ¢ such that the within—class variance of the partition thereby obtained is
minimum. Alternatively, the between—class variance of the partition obtained
is to be maximized. Let P and @) be the partitions prior to, and subsequent to,
the agglomeration; let py, po, ...be classes of the partitions:

P = {p17p27"'7pk701702}
Q = {p17p27"'7pkac}'

Finally, let 7 denote any individual or object, and I the set of such objects.
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In the following, classes (i.e. p or ¢) and individuals (i.e. ¢) will be considered as
vectors or as sets: the context, and the block typing of vectors, will be sufficient
to make clear which is the case.

Total variance of the cloud of objects in m—dimensional space is decom-
posed into the sum of within—class variance and between—class variance. This
is Huyghen’s theorem in classical mechanics. Let V' denote variance. The total
variance of the cloud of objects is

V==Y G- g)

icl
where g is the grand mean of the n objects: g = % > icri . The between—class
variance is

vie) =3 2l gy
peEP

where | p | is the cardinality of (i.e. number of members in) class p. (Note that
p — in block type—face — is used to denote the centre of gravity — a vector —
and p the set whose centre of gravity this is). Finally, the within—class variance

is 1
p— H p— 2
LS Siwr
pEP i€p
For two partitions, before and after an agglomeration, we have respectively:

V(I)=V(P)+ ) _ V(p)

peP
VI =V(@Q) + > V().
PEQ
Hence,
VIP)+V(p1)+...+V(pe) + V(er) + Vier)
=V(Q)+ V() +...+V(pe) +V(c).
Therefore:

V(Q)=V(P)+ V() +V(e2) = V(e).

In agglomerating two classes of P, the variance of the resulting partition (i.e.
V(Q) ) will necessarily decrease: therefore in seeking to minimize this decrease,
we simultaneously achieve a partition with maximum between—class variance.
The criterion to be optimized can then be shown to be:

V(P)=V(Q) = V(o) =V(a)=Vie)

e ler — el .

which is the dissimilarity given in Table 3.1. This is a dissimilarity which may
be determined for any pair of classes of partition P; and the agglomerands are
those classes, ¢; and ¢o, for which it is minimum.

It may be noted that if ¢; and c2 are singleton classes, then V({c1,e2}) =
{ler —ea]? (i-e. the variance of a pair of objects is equal to half their Euclidean
distance).
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3.2.6 Minimal Spanning Tree

Aspects of the minimal spanning tree (MST) are covered in most texts on graph
theory, and on many other areas besides. In graph theory — a subdiscipline of
discrete mathematics — vertices (i.e. points) and edges (i.e. lines joining the
points) are commonly dealt with. A graph is defined as a set of such vertices and
edges. A MST contains (spans) all vertices, and has minimal totalled edge length
(or weights). We will restrict ourselves to a brief description of this important
method. The following algorithm formalises Figure 3.3 in constructing a MST
by a “greedy” or nearest neighbour approach.
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Figure 3.7: Minimal spanning tree of a point pattern (non-unique).

Minimal Spanning Tree algorithm

Step 1 Select an arbitrary point and connect it to the least dissimilar neigh-
bour. These two points constitute a subgraph of the MST.

Step 2 Connect the current subgraph to the least dissimilar neighbour of any
of the members of the subgraph.

Step 3 Loop on Step 2, until all points are in the one subgraph: this, then, is
the MST.

Step 2 agglomerates subsets of objects using the criterion of connectivity.
For proof that this algorithm does indeed produce a MST, see for example
Tucker (1980). The close relationship between the MST and the single linkage
hierarchical clustering method is illustrated in Figure 3.3.

A component in a graph is a subgraph consisting of a set of vertices with at
least one edge connecting each vertex to some other vertex in the component.
Hence a component is simply one possible definition of a cluster, — in fact,
a component is closely related to clusters which can be derived from a single
linkage hierarchy (cf. Figure 3.3).

Breaking up the MST, and thereby automatically obtaining components, is
a problem addressed by Zahn (1971). He defined an edge to be inconsistent if
it is of length much greater than the lengths of other nearby edges (see Figure
3.7).

Inconsistent edges may be picked out by looking at a histogram of edge
lengths in the MST, and marking as deletable a set percentage of greatest—length
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edges. Alternatively, inconsistent edges may be obtained by defining a threshold
of inconsistency: if it is supposed, for instance, that edge lengths are normally
distributed, a threshold of two standard deviations above the mean length of all
edges which are within two edges (say, for some robustness) of the given vertex
may be a useful indicator of inconsistency. Rarely is it worthwhile to attempt to
test a supposition such as normality of edge lengths, and instead a rule such as
this would be judged only on the results given in practice. Zahn applied these
approaches to point pattern recognition, — obtaining what he termed “Gestalt
patterns” among sets of planar points (see Fig. 3.8); picking out bubble chamber
particle tracks, indicated by curved sequences of points; and detecting density
gradients, where differing clusters of points have different densities associated
with them and hence are distinguishable to the human eye. The MST provides
a useful starting point for undertaking such pattern recognition problems.

The MST is also often suitable for outlier detection. Since outlying data
items will be of greater than average distance from their neighbours in the
MST, they may be detected by drawing a histogram of edge lengths. Unusually
large lengths will indicate the abnormal points (or data items) sought. Rohlf
(1975) gave a statistical gap test, under the assumption that the edge lengths
in the MST were normally distributed.

3.2.7 Partitioning Methods

We will conclude this Chapter with a short look at other non—hierarchical clus-
tering methods.

A large number of assignment algorithms have been proposed. The single—
pass approach usually achieves computational efficiency at the expense of preci-
sion, and there are many iterative approaches for improving on crudely—derived
partitions.

As an example of a single—pass algorithm, the following one is given in Salton
and McGill (1983). The general principle followed is: make one pass through
the data, assigning each object to the first cluster which is close enough, and
making a new cluster for objects that are not close enough to any existing
cluster.

Single—pass overlapping cluster algorithm

Input n objects, threshold ¢, dissimilarity on objects.

Step 1 Read object 1, and insert object 1 in membership list of cluster 1. Let
representative of cluster 1 be given by object 1. Set i to 2.

Step 2 Read i" object. If diss( i" object, cluster j ) < t, for any cluster j,
then include the i*" object in the membership list of cluster j, and update
the cluster representative vector to take account of this new member. If
diss( it" object, cluster j) > t, for all clusters j, then create a new cluster,
placing the i*" object in its membership list, and letting the representative
of this cluster be defined by the i*" object.

Step 3 Set i to i+ 1. If i < n, go to Step 2.
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The cluster representative vector used is usually the mean vector of the
cluster’s members; in the case of binary data, this representative might then
be thresholded to have 0 and 1 coordinate values only. In Step 2, it is clear
that overlapping clusters are possible in the above algorithm. In the worst case,
if threshold ¢ is chosen too low, all n objects will constitute clusters and the
number of comparisons to be carried out will be O(n?). The dependence of the
algorithm on the given sequence of objects is an additional disadvantage of this
algorithm. However, its advantages are that it is conceptually very simple, and
for a suitable choice of threshold will probably not require large processing time.
In practice, it can be run for a number of different values of ¢.

As anon-hierarchic strategy, it is hardly surprising that the variance criterion
has always been popular (for some of the same reasons as were seen in Section
3.2.4 for the hierarchical approach based on this criterion). We may, for instance,
minimize the within—class variance

Vopt - minP Z Z ||i - p”2

peP iep

where the partition P consists of classes p of centre p, and we desire the min-
imum of this criterion over all possible partitions, P. To avoid a nontrivial
outcome (e.g. each class being singleton, giving zero totalled within class vari-
ance), the number of classes (k) must be set.

A hierarchical clustering, using the minimum variance criterion, then pro-
vides a solution, — not necessarily optimal — at level n — k when n objects are
being processed. An alternative approach uses iterative refinement, as follows.

Iterative optimization algorithm for the variance criterion
Step 1 Arbitrarily define a set of k cluster centres.

Step 2 Assign each object to the cluster to which it is closest (using the Eu-
clidean distance, d*(i,p) = |li — p||? ).

Step 3 Redefine cluster centres on the basis of the current cluster memberships.

Step 4 If the totalled within class variances is better than at the previous
iteration, then return to Step 2.

We have omitted in Step 4 a test for convergence (the number of iterations
should not exceed, e.g., 25). Cycling is also possible between solution states.
This algorithm could be employed on the results (at level n — k) of a hierarchic
clustering in order to improve the partition found. It is however a suboptimal
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algorithm, — the minimal distance strategy used by this algorithm is clearly a
sufficient but not a necessary condition for an optimal partition.

The initial cluster centres may be chosen arbitrarily (for instance, by av-
eraging a small number of object—vectors); or they may be chosen from prior
knowledge of the data. In the latter case we may for example “manually” choose
a small set of stars and galaxies, determine their (parameter—space) centres of
gravity, and use these as the basis for the classification of objects derived from
a digitized image.

Yet another approach to optimizing the same minimum variance criterion is
the exchange method.

Exchange method for the minimum variance criterion
Step 1 Arbitrarily choose an initial partition.

Step 2 For each i € p, see if the criterion is bettered by relocating i in another
class ¢. If this is the case, we choose class ¢ such that the criterion V is
least; if it is not the case, we proceed to the next i.

Step 3 If the maximum possible number of iterations has not been reached,
and if at least one relocation took place in Step 2, return again to Step 2.

Two remarks may be made: we will normally require that an object not be
removed from a singleton class; and the change in variance brought about by
relocating object i from class p to class ¢ can be shown to be

| . lq|
lli - pl”

. 2
i — i—q
Ip| —1 Iql—1|| |

Hence, if this expression is positive, ¢ ought to be relocated from class p (to
class ¢ if another, better, class is not found).

Spéath (1985) offers a lucid and thorough treatment of algorithms of the sort
described.

In terminating, it is necessary to make some suggestion as to when these par-
titioning algorithms should be used in preference to hierarchical algorithms. We
have seen that the number of classes must be specified, as also the requirement
that each class be non-empty. A difficulty with iterative algorithms, in general,
is the requirement for parameters to be set in advance (Anderberg, 1973, de-
scribes a version of the ISODATA iterative clustering method which requires 7
pre—set parameters). As a broad generalization, it may thus be asserted that it-
erative algorithms ought to be considered when the problem is clearly defined in
terms of numbers and other characteristics of clusters; but hierarchical routines
often offer a more general-purpose and user—friendly option.

3.3 Examples and Bibliography

3.3.1 Examples from Astronomy

Principal Components Analysis has often been used for determining a classifi-
cation, and these references are not included in this Section (see Section 2.3.3).
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The problems covered in the following include: star-galaxy separation, us-
ing digitized image data; spectral classification, — the prediction of spectral
type from photometry; taxonomy construction (for asteroids, stars, and stel-
lar light curves); galaxies; gamma and X-ray astronomy; a clustering approach
not widely used elsewhere is employed for studies relating to the Moon, to as-
teroids and to cosmic sources; and work relating to interferogram analysis is
represented.

1. J.D. Barrow, S.P. Bhavsar and D.H. Sonoda, “Minimal spanning trees,
filaments and galaxy clustering”, Monthly Notices of the Royal Astro-
nomical Society, 216, 17-35, 1985.

(This article follows the seminal approach of Zahn — see reference among
the general clustering works — in using the MST for finding visually evi-
dent groupings.)

2. R. Bianchi, A. Coradini and M. Fulchignoni, “The statistical approach to
the study of planetary surfaces”, The Moon and the Planets, 22, 293-304,
1980.

(This article contains a general discussion which compares the so—called
G—mode clustering method to other multivariate statistical methods. Ref-
erences 7 and 8 below also use this method.)

3. R. Bianchi, J.C. Butler, A. Coradini and A.I. Gavrishin, “A classification
of lunar rock and glass samples using the G-mode central method”, The
Moon and the Planets, 22, 305-322, 1980.

4. A. Bijaoui, “Méthodes mathématiques pour la classification stellaire”,
in Classification Stellaire, Compte Rendu de I’Ecole de Goutelas, ed. D.
Ballereau, Observatoire de Meudon, Meudon, 1979, pp. 1-54.

(This presents a survey of clustering methods.)

5. R. Buccheri, P. Coffaro, G. Colomba, V. Di Gesu and S. Salemi,
“Search of significant features in a direct non—parametric pattern recogni-
tion method. Application to the classification of multiwire spark chamber

pictures”, in (eds.) C. de Jager and H. Nieuwenhuijzen, Image Processing
Techniques in Astronomy, D. Reidel, Dordrecht, pp. 397-402, 1975.

(A technique is developed for classifying y—ray data.)

6. S.A. Butchins, “Automatic image classification”, Astronomy and Astro-
physics, 109, 360-365, 1982.

(A method for determining Gaussian clusters, due to Wolf, is used for
star /galaxy separation in photometry.)

7. A. Coradini, M. Fulchignoni and A.I. Gavrishin, “Classification of lunar
rocks and glasses by a new statistical technique”, The Moon, 16, 175-190,
1976.

(The above, along with the references of Bianchi and others, make use of
a clustering technique called the G-mode method. The above contains a
short mathematical description of the technique proposed.)
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10.

11.

12.

13.

14.

A. Carusi and E. Massaro, “Statistics and mapping of asteroid concentra-
tions in the proper elements’ space”, Astronomy and Astrophysics Sup-
plement Series, 34, 81-90, 1978.

(This article also uses the so—called G-mode method, employed by Bianchi,
Coradini, and others.)

C.R. Cowley and R. Henry, “Numerical taxonomy of Ap and Am stars”,
The Astrophysical Journal, 233, 633-643, 1979.

(40 stars are used, characterised on the strength with which particular
atomic spectra — the second spectra of yttrium, the lanthanides, and the
iron group — are represented in the spectrum. Stars with very similar
spectra end up correctly grouped; and anomolous objects are detected.
Clustering using lanthanides, compared to clustering using iron group
data, gives different results for A, stars. This is not the case for A,
stars, which thus appear to be less heterogeneous. The need for physical
explanations are thus suggested.)

C.R. Cowley, “Cluster analysis of rare earths in stellar spectra”, in Statis-
tical Methods in Astronomy, European Space Agency Special Publication
201, 1983, pp. 153-156.

(About twice the number of stars, as used in the previous reference, are
used here. A greater role is seen for chemical explanations of stellar abun-
dances and/or spectroscopic patterns over nuclear hypotheses.)

J.K. Davies, N. Eaton, S.F. Green, R.S. McCheyne and A.J. Meadows,
“The classification of asteroids”, Vistas in Astronomy, 26, 243-251, 1982.

(Physical properties of 82 asteroids are used. The dendrogram obtained is
compared with other classification schemes based on spectral characteris-
tics or colour—colour diagrams. The clustering approach used is justified
also in being able to pinpoint objects of particular interest for further ob-
servation; and in allowing new forms of data — e.g. broadband infrared
photometry — to be quickly incorporated into the overall approach of
classification—construction.)

G.A. De Biase, V. di Gesu and B. Sacco, “Detection of diffuse clusters in
noise background”, Pattern Recognition Letters 4, 39-44, 1986.

P.A. Devijver, “Cluster analysis by mixture identification”, in V. Di Gesu,
L. Scarsi, P. Crane, J.H. Friedman and S. Levialdi (eds.), Data Analysis
in Astronomy, Plenum Press, New York, 1984, pp. 29-44.

(A useful review article, with many references. A perspective similar to
perspectives adopted by many discriminant analysis methods is used.)

V. Di Gestu and B. Sacco, “Some statistical properties of the minimum
spanning forest”, Pattern Recognition, 16, 525-531, 1983.

(In this and the following works, the minimal spanning tree or fuzzy set
theory — which, is clear from the article titles — are applied to point
pattern distinguishing problems involving gamma and X-ray data. For a
rejoinder to the foregoing reference, see R.C. Dubes and R.L. Hoffman,
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15.

16.

17.

18.

19.

20.

21.

22.

23.
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“Remarks on some statistical properties of the minimum spanning for-
est”, Pattern Recognition, 19, 49-53, 1986. A reply to this article is
forthcoming, from the authors of the original paper.)

V. Di Gest, B. Sacco and G. Tobia, “A clustering method applied to the
analysis of sky maps in gamma-ray astronomy”, Memorie della Societa
Astronomica Italiana, 517-528, 1980.

V. Di Gestu and M.C. Maccarone, “A method to classify celestial shapes
based on the possibility theory”, in G. Sedmak (ed.), ASTRONET 1983
(Convegno Nazionale Astronet, Brescia, Published under the auspices of
the Ttalian Astronomical Society), 355-363, 1983.

V. Di Gestt and M.C. Maccarone, “Method to classify spread shapes based
on possibility theory”, Proceedings of the 7th International Conference on
Pattern Recognition, Vol. 2, IEEE Computer Society, 1984, pp. 869-871.

V. Di Gesu and M.C. Maccarone, “Features selection and possibility
theory”, Pattern Recognition, 19, 63—-72, 1986.

J.V. Feitzinger and E. Braunsfurth, “The spatial distribution of young
objects in the Large Magellanic Cloud — a problem of pattern recogni-
tion”, in eds. S. van den Bergh and K.S. de Boer, Structure and Evolution
of the Magellanic Clouds, TAU, 93-94, 1984.

(In an extended abstract, the use of linkages between objects is described.)

LE. Frank, B.A. Bates and D.E. Brownlee, “Multivariate statistics to
analyze extraterrestrial particles from the ocean floor”, in V. Di Gesu, L.
Scarsi, P. Crane, J.H. Friedman and S. Levialdi (eds.), Data Analysis in
Astronomy, Plenum Press, New York, 1984.

A. Fresneau, “Clustering properties of stars outside the galactic disc”, in
Statistical Methods in Astronomy, European Space Agency Special Pub-
lication 201, 1983, pp. 17-20.

(Techniques from the spatial processes area of statistics are used to assess
clustering tendencies of stars.)

A. Heck, A. Albert, D. Defays and G. Mersch, “Detection of errors in
spectral classification by cluster analysis”, Astronomy and Astrophysics,
61, 563-566, 1977.

A. Heck, D. Egret, Ph. Nobelis and J.C. Turlot, “Statistical  confirma-
tion of the UV spectral classification system based on IUE low—dispersion
stellar spectra”, Astrophysics and Space Science, 120, 223-237, 1986.

(Among other results, it is found that UV standard stars are located in the
neighbourhood of the centres of gravity of groups found, thereby helping to
verify the algorithm implemented. A number of other papers, by the same
authors, analysing IUE spectra are referenced in this paper. Apart from
the use of a large range of clustering methods, these papers also introduce
a novel weighting procedure — termed the “variable Procrustean bed”
(see Chapter 6) — which adjusts for the symmetry/asymmetry of the
spectrum. Therefore, a useful study of certain approaches to the coding
of data is to be found in these papers.)
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J.P. Huchra and M.J. Geller, “Groups of galaxies. I. Nearby groups”,
The Astrophysical Journal, 257, 423-437, 1982.

(The single linkage hierarchical method, or the minimal spanning tree,
have been rediscovered many times — see, for instance, Graham and Hell,
1985, referenced in the general clustering section. In this study, a close
variant is used for detecting groups of galaxies using three variables, —
two positional variables and redshift.)

J.F. Jarvis and J.A. Tyson, “FOCAS: faint object classification and
analysis system”, The Astronomical Journal, 86, 476-495, 1981.

(An iterative minimal distance partitioning method is employed in the
FOCAS system to arrive at star/galaxy/other classes.)

G. Jasniewicz, “The Bohm—Vitense gap in the Geneva photometric sys-
tem”, Astronomy and Astrophysics, 141, 116-126, 1984.

(The minimal spanning tree is used on colour—colour diagrams.)

A. Kruszewski, “Object searching and analyzing commands”, in MIDAS
— Munich Image Data Analysis System, European Southern Observatory
Operating Manual No. 1, Chapter 11, 1985.

(The Inventory routine in MIDAS has a non-hierarchical iterative opti-
mization algorithm. It can immediately work on up to 20 parameters,
determined for each object in a scanned image.)

M.J. Kurtz, “Classification methods: an introductory survey”, in Statis-
tical Methods in Astronomy, European Space Agency Special Publication
201, 1983, pp. 47-58.

(Kurtz lists a large number of parameters — and functions of these pa-
rameters — which have been used to differentiate stars from galaxies.)

J. Materne, “The structure of nearby clusters of galaxies. Hierarchical
clustering and an application to the Leo region”, Astronomy and Astro-
physics, 63, 401-409, 1978.

(Ward’s minimum variance hierarchic method is used, following discussion
of the properties of other hierarchic methods.)

M.O. Mennessier, “A cluster analysis of visual and near—infrared light
curves of long period variable stars”, in Statistical Methods in Astronomy,
European Space Agency Special Publication 201, 1983, pp. 81-84.

(Light curves — the variation of luminosity with time in a wavelength
range — are analysed. Standardization is applied, and then three hier-
archical methods. “Stable clusters” are sought from among all of these.
The study is continued in the following.)

M.O. Mennessier, “A classification of miras from their visual and near—
infrared light curves: an attempt to correlate them with their evolution”,
Astronomy and Astrophysics, 144, 463-470, 1985.

MIDAS (Munich Image Data Analysis System), European Southern Ob-
servatory, Garching—bei-Miinchen (Version 4.1, January 1986). Chapter
13: Multivariate Statistical Methods.
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33.

34.

35.

36.

37.

38.

39.

40.

41.
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(This premier astronomical data reduction package contains a large num-
ber of multivariate algorithms.)

M. Moles, A. del Olmo and J. Perea, “Taxonomical analysis of super-
clusters. I. The Hercules and Perseus superclusters”, Monthly Notices of
the Royal Astronomical Society, 213, 365-380, 1985.

(A non-hierarchical descending method, used previously by Paturel, is
employed.)

F. Murtagh, “Clustering techniques and their applications”, Data Analysis
and Astronomy (Proceedings of International Workshop on Data Analysis
and Astronomy, Erice, Italy, April 1986) Plenum Press, New York, 1986
(in press).

F. Murtagh and A. Lauberts, “A curve matching problem in astronomy”,
Pattern Recognition Letters, 1986 (in press).

(A dissimilarity is defined between galaxy luminosity profiles, in order to
arrive at a spiral—elliptical grouping.)

G. Paturel, “Etude de la région de ’amas Virgo par taxonomie”, Astron-
omy and Astrophysics, 71, 106-114, 1979.

(A descending non—hierarchical method is used.)

J. Perea, M. Moles and A. del Olmo, “Taxonomical analysis of the Cancer
cluster of galaxies”, Monthly Notices of the Royal Astronomical Society,
222, 49-53, 1986.

(A non-hierarchical descending method is used.)

D.J. Tholen, “Asteroid taxonomy from cluster analysis of photometry”,
PhD Thesis, University of Arizona, 1984.

(Between 400 and 600 asteroids using good—quality multi—colour photo-
metric data are analysed.)

F. Giovannelli, A. Coradini, J.P. Lasota and M.L. Polimene, “Classifi-
cation of cosmic sources: a statistical approach”, Astronomy and Astro-
physics, 95, 138-142, 1981.

B. Pirenne, D. Ponz and H. Dekker, “Automatic analysis of interfero-
grams”, The Messenger, No. 42, 2-3, 1985.

(The minimal spanning tree is used to distinguish fringes; there is little
description of the MST approach in the above article, but further articles
are in preparation and the software — and accompanying documentation
— are available in the European Southern Observatory’s MIDAS image
processing system.)

A. Zandonella, “ Object classification: some methods of interest in as-
tronomical image analysis”, in Image Processing in Astronomy, eds. G.
Sedmak, N. Capaccioli and R.J. Allen, Osservatorio Astronomico di Tri-
este, Trieste, 304-318, 1979.

(This presents a survey of clustering methods.)
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3.3.2 General References

1.

10.

11.

M.R. Anderberg, Cluster Analysis for Applications, Academic Press, New
York, 1973.

(A little dated, but still very much referenced; good especially for similar-
ities and dissimilarities.)

. J.P. Benzécri et coll., L’Analyse des Données. I. La Taxinomie, Dunod,

Paris, 1979 (3rd ed.).

(Very influential in the French speaking world; extensive treatment, and
impressive formalism.)

. R.K. Blashfield and M.S. Aldenderfer, “The literature on cluster analy-

sis”, Multivariate Behavioral Research, 13, 271-295, 1978.

. H.H. Bock, Automatische Klassifikation, Vandenhoek und Rupprecht, Gott-

ingen, 1974.
(Encyclopaedic.)

. CLUSTAN, Clustan Ltd., 16 Kingsburgh Road, Edinburgh EH12 6DZ,

Scotland.

(The only exclusively clustering package available.)

. B. Everitt, Cluster Analysis, Heinemann Educational Books, London, 1980

(2nd ed.).
(A readable, introductory text.)

. A.D. Gordon, Classification, Chapman and Hall, London, 1981.

(Another recommendable introductory text.)

. R.L. Graham and P. Hell, “On the history of the minimum spanning tree

problem”, Annals of the History of Computing, 7, 43-57, 1985.
(An interesting historical study.)

. J.A. Hartigan, Clustering Algorithms, Wiley, New York, 1975.

(Often referenced, this book could still be said to be innovative in its
treatment of clustering problems; it contains a wealth of sample data
sets.)

M. Jambu and M.O. Lebeaux, Cluster Analysis and Data Analysis,

North-Holland, Amsterdam, 1983.

(Some of the algorithms discussed have been overtaken by, for instance, the
“nearest neighbour chain” or “reciprocal nearest neighbour” algorithms.)
L. Lebart, A. Morineau and K.M. Warwick, Multivariate Descriptive

Statistical Analysis, Wiley, New York, 1984.

(A useful book, centred on Multiple Correspondence Analysis.)
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12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.
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R.C.T. Lee, “Clustering analysis and its applications”, in J.T. Tou (ed.)
Advances in Information Systems Science, Vol. 8, Plenum Press, New
York, 1981, pp. 169-292.

(Practically book—length, it is especially useful for the links between clus-
tering and problems in computing and in Operations Research.)

F. Murtagh, “Structure of hierarchic clusterings: implications for informa-
tion retrieval and for multivariate data analysis”, Information Processing
and Management, 20, 611-617, 1984.

F. Murtagh, Multidimensional Clustering Algorithms, COMPSTAT Lec-
tures Volume 4, Physica—Verlag, Wien, 1985.

(Algorithmic details of a range of clustering methods.)

A. Rapoport and S. Fillenbaum, “An experimental study of semantic
structures”, in eds. A.K. Romney, R.N. Shepard and S.B. Nerlove, Multi-

dimensional Scaling; Theory and Applications in the Behavioral Sciences.
Vol. 2, Applications, Seminar Press, New York, 93-131, 1972.

F.J. Rohlf, “Generalization of the gap test for the detection of multivariate
outliers”, Biometrics, 31, 93-101, 1975.

(One application of the Minimal Spanning Tree.)

G. Salton and M.J. McGill, Introduction to Modern Information Re-
trieval, McGraw—Hill, New York, 1983.

(A central reference in the information retrieval area.)

P.H.A. Sneath and R.R. Sokal, Numerical Taxonomy, Freeman, San Fran-
cisco, 1973.

(Very important for biological applications, it also has some impressive
collections of graph representations of clustering results.)

H. Spéth, Cluster Dissection and Analysis: Theory, Fortran Programs,
Examples, Ellis Horwood, Chichester, 1985.

(Recommendable reference for non—hierarchic, partitioning methods.)

A. Tucker, Applied Combinatorics, Wiley, New York, 1980.

(For graph theory and combinatorics.)

D. Wishart, “Mode analysis: a generalization of nearest neighbour which
reduces chaining effects”, in ed. A.J. Cole, Numerical Taxonomy, Aca-
demic Press, New York, 282-311, 1969.

(Discusses various variance—based clustering criteria which, interestingly,
are justified by the difficulties experienced by more mainstream algorithms
in clustering data of the type found in the H-R diagram.)

C.T. Zahn, “Graph—theoretical methods for detecting and describing Gestalt
clusters”, IEEE Transactions on Computers, C—20, 68—86, 1971.

(Central reference for the use of the Minimal Spanning Tree for processing
point patterns.)
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3.4 Software and Sample Implementation

3.4.1 Fortran Code, Sample Input and Output

In the first section, following, hierarchical clustering is dealt with. The prin-
cipal subroutines are HC, which carries out a dissimilarity—based hierarchical
clustering; and HCON2, which carries out a hierarchic clustering based on the
original data in O(n?) time. The use of HCASS and HCDEN may follow either:
these subroutines determine class assignments and allow a dendrogram to be
drawn.

The second section, which follows, deals with partitioning. Following Spéath
(1985), the essential subroutines are MINDST and EXCH for the minimal distance
and exchange methods, respectively.

3.4.2 Program Listing: Hierarchical Clustering

O S

C
C HIERARCHICAL CLUSTERING using (user-specified) criterion.
C
C Parameters:
C
C DATA(N,M) input data matrix,
C DISS(LEN) dissimilarities in lower half diagonal
C storage; LEN = N.N-1/2,
C IOPT clustering criterion to be used,
C IA, IB, CRIT history of agglomerations; dimensions
C N, first N-1 locations only used,
C MEMBR, NN, DISNN vectors of length N, used to store
C cluster cardinalities, current nearest
C neighbour, and the dissimilarity assoc.
C with the latter.
C FLAG boolean indicator of agglomerable obj./
C clusters.
C
c _________________________________________________________

SUBROUTINE HC(N,M,LEN,IOPT,DATA,IA,IB,CRIT,MEMBR,NN,DISNN,

X FLAG,DISS)

REAL DATA(N,M),MEMBR(N),DISS(LEN)

INTEGER IA(N),IB(N)

REAL CRIT(N)

DIMENSION NN(N),DISNN(N)

LOGICAL FLAG(N)

REAL INF

DATA INF/1.E+20/
C
C Initializations
C

DO 10 I=1,N

MEMBR(I)=1.

FLAG(I)=.TRUE.
10  CONTINUE

NCL=N
C
C Construct dissimilarity matrix
C

DO 40 I=1,N-1
DO 30 J=I+1,N
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IND=IOFFS(N,I,J)
DISS(IND)=0.
DO 20 K=1,M
DISS(IND)=DISS(IND)+(DATA(I,K)-DATA(J,K))**2
20 CONTINUE
IF (IOPT.EQ.1) DISS(IND)=DISS(IND)/2.

C (Above is done for the case of the min. var. method
C where merging criteria are defined in terms of

C variances rather than distances.)

30 CONTINUE

40 CONTINUE

C

C Carry out an agglomeration - first create list of NNs
¢
DO 60 I=1,N-1
DMIN=INF
DO 50 J=I+1,N
IND=IOFFS(N,I,J)
IF (DISS(IND).GE.DMIN) GOTO 50
DMIN=DISS(IND)
JM=J
50 CONTINUE
NN (I)=JM
DISNN(I)=DMIN
60  CONTINUE

70  CONTINUE
C Next, determine least diss. using list of NNs
DMIN=INF
DO 80 I=1,N-1
IF (.NOT.FLAG(I)) GOTO 80
IF (DISNN(I).GE.DMIN) GOTO 80
DMIN=DISNN(I)
IM=I
JM=NN(I)
80  CONTINUE
NCL=NCL-1
C
C This allows an agglomeration to be carried out.
C
I2=MINO(IM,JM)
J2=MAXO0(IM,JM)
IA(N-NCL)=I2
IB(N-NCL)=J2
CRIT(N-NCL)=DMIN
C
C Update dissimilarities from new cluster.
C
FLAG(J2)=.FALSE.
DMIN=INF
DO 170 K=1,N
IF (.NOT.FLAG(K)) GOTO 160
IF (K.EQ.I2) GOTD 160
X=MEMBR(I2)+MEMBR (J2)+MEMBR(K)
IF (I2.LT.X) IND1=IQFFS(N,I2,K)
IF (I2.GE.XK) IND1=IQFFS(N,K,I2)
IF (J2.LT.K) IND2=I0FFS(N,J2,K)
IF (J2.GE.XK) IND2=I0FFS(N,K,J2)
IND3=I0FFS(N,I2,J2)
XX=DISS(IND3)
C
C WARD’S MINIMUM VARIANCE METHOD - IOPT=1.
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c
IF (IOPT.NE.1) GOTO 90
DISS(IND1)=(MEMBR(I2)+MEMBR(K))*DISS(IND1)+
X (MEMBR(J2)+MEMBR(K) ) *DISS(IND2)-
X MEMBR (K) #XX
DISS(IND1)=DISS(IND1)/X
90 CONTINUE
c
C SINGLE LINK METHOD - IOPT=2.
c
IF (IOPT.NE.2) GOTO 100
DISS(IND1)=MIN(DISS(IND1),DISS(IND2))
100 CONTINUE
c
C COMPLETE LINK METHOD - IQPT=3.
c
IF (IOPT.NE.3) GOTO 110
DISS(IND1)=MAX(DISS(IND1),DISS(IND2))
110 CONTINUE
c
C AVERAGE LINK (OR GROUP AVERAGE) METHOD - IOPT=4.
c
IF (IOPT.NE.4) GOTO 120
DISS(IND1)=(MEMBR (I2)*DISS(IND1)+MEMBR (J2)*DISS(IND2))/
X (MEMBR(I2)+MEMBR(J2))
120 CONTINUE
c
C MCQUITTY’S METHOD - IOPT=5.
c
IF (IOPT.NE.5) GOTO 130
DISS(IND1)=0.5+*DISS(IND1)+0.5+*DISS(IND2)
130 CONTINUE
c
C MEDIAN (GOWER’S) METHOD - IQPT=6.
c
IF (IOPT.NE.6) GOTO 140
DISS(IND1)=0.5+*DISS(IND1)+0.5%*DISS(IND2)-0.25%XX
140 CONTINUE
c
C CENTROID METHOD - IOPT=7.
c
IF (IOPT.NE.7) GOTO 150
DISS(IND1)=(MEMBR(I2)*DISS(IND1)+MEMBR(J2)*DISS(IND2)-
X MEMBR (I2)*MEMBR (J2)*XX/(MEMBR (I2)+MEMBR(J2)))/
X (MEMBR (I2)+MEMBR.(J2))
150 CONTINUE
c
IF (I2.GT.K) GOTO 160
IF (DISS(IND1).GE.DMIN) GOTO 160
DMIN=DISS(IND1)
JJ=K
160 CONTINUE

170 CONTINUE
MEMBR (I2)=MEMBR,(I2)+MEMBR(J2)
DISNN(I2)=DMIN

NN(I2)=JJ
C
C Update list of NNs insofar as this is required.
C

DO 200 I=1,N-1
IF (.NOT.FLAG(I)) GOTO 200
IF (NN(I).EQ.I2) GOTO 180
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IF (NN(I).EQ.J2) GOTO 180
GOTO 200
180 CONTINUE
[ (Redetermine NN of I:)
DMIN=INF
DO 190 J=I+1,N
IND=IQFFS(N,I,J)
IF (.NOT.FLAG(J)) GOTO 190
IF (I.EQ.J) GOTO 190
IF (DISS(IND).GE.DMIN) GOTO 190
DMIN=DISS(IND)
JJ=J
190 CONTINUE
NN(I)=JJ
DISNN(I)=DMIN
200 CONTINUE

C Repeat previous steps until N-1 agglomerations carried out.

IF (NCL.GT.1) GOTO 70

C

C
RETURN
END

C

C

FUNCTION IOFFS(N,I,J)
C Map row I and column J of upper half diagonal symmetric matrix
C onto vector.

I0FFS=J+(I-1)*N-(I*(I+1))/2

RETURN

END
O a2 2 B A

HIERARCHICAL CLUSTERING using Minimum Variance Criterion,
using the 0(N*%2) time Nearest Neighbour Chain algorithm.

Parameters:

DATA(N,M) : input data,

IA(N), IB(N), CRIT(N) : sequence of agglomerands and
values returned (only locations 1 to N-1
are of interest),

MEMBR(N), DISS(N), ICHAIN(N) : used in the routines to store
cluster cardinalities, nearest neighbour
dissimilarities, and the NN-chain.

FLAG(N) : (boolean) used to indicate agglomerable
objects and clusters.

Reference: Murtagh, Multidimensional Clustering Algorithms,
Physica-Verlag, 1985.

cNeoNoNoNoNoNoNoNoNoNoNoNoNoNoNoNoNe el

Q

SUBROUTINE HCON2(N,M,DATA,IA,IB,CRIT,MEMBR,DISS,ICHAIN,FLAG)
REAL MEMBR(N), DATA(N,M), DISS(N), CRIT(N)
INTEGER ICHAIN(N), IA(N), IB(N)
REAL INF
LOGICAL FLAG(I)
DATA INF/1.E+25/
c EQUIVALENCE (ICHAIN(1),IA(1)),(DISS(1),CRIT(1))

DO 150 I=1,N
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MEMBR (I)=1
FLAG(I)=.TRUE.
150 CONTINUE
NCL=N
I1=1

Q

Start the NN-chain:
200 LEN=N
ICHAIN(LEN)=I1
DISS(LEN)=INF
C Determine NN of object Il
300 FLAG(I1)=.FALSE.

C Turn off FLAG so that O diss. of Il with self not obtained.

D=DISS(LEN)
IF (LEN.LT.N) I2=ICHAIN(LEN+1)

C For identical diss.’s, above ensures that RNN will be found.

CALL DETNN(DATA,FLAG,MEMBR,N,M,I1,I2,D)
FLAG(I1)=.TRUE.

¢
C If LEN = 1 place obj. I2 as second obj. in NN-chain.
¢

IF (LEN.LT.N) GOTO 350

LEN=LEN-1

IF (LEN.LT.N-NCL) GOTO 700

ICHAIN(LEN)=I2

DISS(LEN)=D

GOTO 500
¢
C If LEN < N distinguish between having RNN & continuing NN-chain.
¢

350 CONTINUE
IF (I2.NE.ICHAIN(LEN+1)) GOTD 400

¢
C Have RNN.
¢
NCL=NCL-1
CALL AGGLOM(I1,I2,D,DATA,MEMBR,FLAG,IA,IB,CRIT,NCL,N,M)
LEN=LEN+2
GOTD 500
400 CONTINUE
¢
C Grow extra link on NN-chain.
¢
IDUM=ICHAIN(LEN+1)
FLAG(IDUM)=.FALSE.
LEN=LEN-1
IF (LEN.LE.N-NCL) GOTO 700
ICHAIN(LEN)=I2
DISS(LEN)=D
GOTO 500
¢
C Select obj. for continuing to grow (or restarting) NN-chain.
¢

500 CONTINUE
IF (NCL.EQ.1) GOTD 600

87
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IF (LEN.EQ.N+1) GOTO 550
I1=ICHAIN(LEN)

FLAG(I1)=.TRUE.

IDUM=ICHAIN (LEN+1)

IF (LEN.LT.N) FLAG(IDUM)=.TRUE.

¢
C Reestablish agglomerability of objects in NN-chain.
¢
GOTO 300
550 CALL NEXT(FLAG,I1,N)
GOTO 200
¢
600 CONTINUE
RETURN
700 WRITE(6,750)
750 FORMAT
X(’ ERROR IN NN-CHAIN ROUTINE - INSUFFICIENT CHAIN SPACE’/)
STOP
END
C-——— -
SUBROUTINE DETNN(DATA,FLAG,MEM,N,M,I1,I2,D)
¢
C Determine a nearest neighbour.
¢
REAL DATA(N,M),MEM(N)
LOGICAL FLAG(N)
¢
DO 200 I=1,N
IF (.NOT.FLAG(I)) GOTO 200
DISS=0.
DO 100 J=1,M

100 DISS=DISS+(DATA(I1,J)-DATA(I,J))*(DATA(I1,J)-DATA(I,T))
DISS=DISS*MEM(I)*MEM(I1)/(MEM(I1)+MEM(I))
IF (DISS.GE.D) GOTO 200

D=DISS
I12=I
200 CONTINUE
¢
RETURN
END
C-——— -
SUBROUTINE AGGLOM(I1,I2,D,DATA,MEM,FLAG,IA,IB,CRIT,NCL,N,M)
¢
C Carry out an agglomeration.
¢
REAL MEM(N),DATA(N,M),CRIT(N)
INTEGER IA(N),IB(N)
LOGICAL FLAG(N)
INTEGER 01,02,LB,UB
¢
¢

01=MINO(I1,I2)
02=MAX0(I1,I2)
DO 100 J=1,M
DATA(01,J)=( MEM(01)*DATA(D1,J)+MEM(02)*DATA(02,J) )
X / (MEM(D1)+MEM(02))
DATA(02,J)=DATA(01,J)
100 CONTINUE
NAGGL=N-NCL
MEM(01)=MEM(01)+MEM(02)
FLAG(D2)=.FALSE.
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C
C
C

aQQ

aaaaaQ

Keep sorted list of criterion values: find first where
new criterion value fits.
I=NAGGL-1
120 IF (D.GE.CRIT(I)) GOTO 140
I=I-1
IF (I.GE.1) GOTO 120
Arriving here must mean that D > all crit. values found so far.
I=0
140 CONTINUE
Now, shift rightwards from I+l to AGGL-1 to make room for
new criterion value.
LB=I+1
UB=NAGGL-1
IF (LB.GT.UB) GOTO 180
J=UB
160 Ji=J+1

IA(J1)=IA(J)

IB(J1)=IB(J)

CRIT(J1)=CRIT(J)

J=J-1

IF (J.GE.LB) GOTO 160
180 CONTINUE

IA(LB)=01

IB(LB)=02

CRIT(LB)=D

RETURN
END

SUBROUTINE NEXT(FLAG,I1,N)
Determine next agglomerable object/cluster.
LOGICAL FLAG(N)

NXT=I1+1
IF (NXT.GT.N) GOTO 150
DO 100 I=NXT,N
IF (FLAG(I)) GOTO 500
100 CONTINUE
150 DO 200 I=1,I1
IF (FLAG(I)) GOTO 500
200 CONTINUE

STOP
500 I1=I

RETURN
END

O T e S A

aaoaaoaaaaQ

Given a HIERARCHIC CLUSTERING, described as a sequence of
agglomerations, derive the assignments into clusters for the
top LEV-1 levels of the hierarchy.

Prepare also the required data for representing the
dendrogram of this top part of the hierarchy.



90 CHAPTER 3. CLUSTER ANALYSIS
¢

C Parameters:

¢

C IA, IB, CRIT: vectors of dimension N defining the agglomer-
C ations.

C LEV: number of clusters in largest partition.

C HVALS: vector of dim. LEV, used internally only.

C ICLASS: array of cluster assignments; dim. N by LEV.
C IORDER, CRITVL, HEIGHT: vectors describing the dendrogram,
¢ all of dim. LEV.

¢

C N should be greater than LEV.

¢

Q

oo

SUBROUTINE HCASS(N,IA,IB,CRIT,LEV,ICLASS,HVALS,IORDER,
X CRITVL,HEIGHT)

INTEGER IA(N),IB(N),ICLASS(N,LEV),HVALS(LEV),IORDER(LEV),
X HEIGHT(LEV)

REAL CRIT(N),CRITVL(LEV)

Pick out the clusters which the N objects belong to,

at levels N-2, N-3, ... N-LEV+1 of the hierarchy.

The clusters are identified by the lowest seq. no. of
their members.

There are 2, 3, ... LEV clusters, respectively, for the
above levels of the hierarchy.

HVALS(1)=1
HVALS(2)=IB(N-1)
LOC=3
DO 59 I=N-2,N-LEV,-1
DO 52 J=1,L0C-1
IF (IA(I).EQ.HVALS(J)) GOTO 54
52 CONTINUE
HVALS(LOC)=IA(I)
LOC=LOC+1
54 CONTINUE
DO 56 J=1,L0C-1
IF (IB(I).EQ.HVALS(J)) GOTO 58
56 CONTINUE
HVALS(LOC)=IB(I)
LOC=LOC+1
58 CONTINUE
59 CONTINUE

DO 400 LEVEL=N-LEV,N-2
DO 200 I=1,N
ICL=I
DO 100 ILEV=1,LEVEL
100 IF (IB(ILEV).EQ.ICL) ICL=IA(ILEV)
NCL=N-LEVEL
ICLASS(I,NCL-1)=ICL
200  CONTINUE
400 CONTINUE

DO 120 I=1,N
DO 120 J=1,LEV-1
DO 110 K=2,LEV
IF (ICLASS(I,J).NE.HVALS(K)) GOTO 110
ICLASS(I,J)=K
GOTO 120
110 CONTINUE
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120 CONTINUE

WRITE (6,450)

450 FORMAT(4X,’ SEQ NOS 2CL 3CL 4CL 5CL 6CL 7CL 8CL 9CL’)
WRITE (6,470)

470 FORMAT(4X,? =—--——== === === —m= ——— mmm —om o )
DO 500 I=1,N
WRITE (6,600) I,(ICLASS(I,J),J=1,8)

600 FORMAT(I11,8I4)

500 CONTINUE

Determine an ordering of the LEV clusters (at level LEV-1)
for later representation of the dendrogram.

These are stored in IORDER.

Determine the associated ordering of the criterion values
for the vertical lines in the dendrogram.

The ordinal values of these criterion values may be used in
preference, and these are stored in HEIGHT.

Finally, note that the LEV clusters are renamed so that they
have seq. nos. 1 to LEV.

[eNoNoNoNsNoNoNoNeoNeNe]

IORDER(1)=IA(N-1)
IORDER(2)=IB(N-1)
CRITVL(1)=0.0
CRITVL(2)=CRIT(N-1)
HEIGHT(1)=LEV
HEIGHT(2)=LEV-1
LOC=2
DO 700 I=N-2,N-LEV+1,-1
DO 650 J=1,L0C
IF (IA(I).EQ.IORDER(J)) THEN
¢ Shift rightwards and insert IB(I) beside IORDER(J):
DO 630 K=LOC+1,J+1,-1
TORDER (K)=IORDER(K-1)
CRITVL(K)=CRITVL(K-1)
HEIGHT (K)=HEIGHT (K-1)
630 CONTINUE
I0RDER (J+1)=IB(I)
CRITVL(J+1)=CRIT(I)
HEIGHT(J+1)=I-(N-LEV)
LOC=LOC+1
ENDIF
650 CONTINUE
700 CONTINUE
DO 705 I=1,LEV
DO 703 J=1,LEV
IF (HVALS(I).EQ.IORDER(J)) THEN
I0RDER(J)=I
GOTD 705
ENDIF
703 CONTINUE
705 CONTINUE

RETURN
END

[ R B o i o B S B A A A e S B Ay

Construct a DENDROGRAM of the top 8 levels of
a HIERARCHIC CLUSTERING.

Parameters:

aaoaaoaaaaQ
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C IORDER, HEIGHT, CRITVL: vectors of length LEV
C defining the dendrogram.

C These are: the ordering of objects

C along the bottom of the dendrogram

C (IORDER); the height of the vertical
C above each object, in ordinal values
¢ (HEIGHT); and in real values (CRITVL).
¢
¢
¢
¢
¢

NOTE: these vectors MUST have been set up with
LEV = 9 in the prior call to routine
HCASS.

SUBROUTINE HCDEN(LEV,IORDER,HEIGHT,CRITVL)
CHARACTER*80 LINE

INTEGER IORDER(LEV),HEIGHT(LEV)

REAL CRITVL(LEV)

INTEGER QUT(27,27)

INTEGER UP,ACROSS,BLANK

DATA UP,ACROSS,BLANK/’|?,’-7,’ ?/

Q

DO 10 I=1,27
DO 10 J=1,27
0UT(I,J)=BLANK
10  CONTINUE

D0 50 I=3,27,3
12=I/3

J2=28-3+HEIGHT (I2)
J =27
20 CONTINUE
DUT(J,I)=UP
J=7J-1
IF (J.GE.J2) GOTO 20
c
K=1
30 CONTINUE
I3=INT((K+2)/3)
IF ( (28-HEIGHT(I3)*3).LT.J2) GOTO 40
0UT(J2,K)=ACR0OSS
K = K-1
IF (K.GE.3) GOTO 30
40 CONTINUE

50 CONTINUE

Q

IC=3
DO 90 I=1,27
IF (I.NE.IC+1) GOTO 80
IDUM=IC/3
IDUM=9-IDUM
DO 60 L=1,9
IF (HEIGHT(L).EQ.IDUM) GOTO 70
60 CONTINUE
70 IDUM=L
WRITE(6,200) CRITVL(IDUM),(OUT(I,J),J=1,27)
IC=IC+3
GOTOD 90
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80

90

200
210
220
230
240
250

SOFTWARE AND SAMPLE IMPLEMENTATION

CONTINUE
LINE = * °
WRITE(6,210) (OUT(I,J),J=1,27)
CONTINUE
WRITE(6,250)
WRITE(6,220) (IORDER(J),J=1,9)
WRITE(6,250)
WRITE(6,230)
WRITE(6,240)
FORMAT(1H ,8X,F12.2,4X,27A1)
FORMAT(1H ,24X,27A1)
FORMAT(1H ,24X,9I3)

FORMAT(1H ,13X,’CRITERION CLUSTERS 1 TO 9°)
FORMAT(1H ,13X,’VALUES. (TOP 8 LEVELS OF HIERARCHY).’)
FORMAT (/)

RETURN

END

93
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3.4.3 Program Listing: Partitioning

O e e

¢
C Generate a random partition.
¢
C Parameters:
¢
C MEMGP(N) Group memberships,
C NG number of groups,
C ISEED seed for random number generator.
¢
C Note: random number generator is machine-dependent.
¢
C-——— -
SUBROUTINE RANDP(N,NG,MEMGP,ISEED)
DIMENSION MEMGP(N)
¢
DO 100 I =1, N
MEMGP(I) = 1
100  CONTINUE
¢
IF (NG.LE.1.0R.N.LE.1) GOTO 500
X = 1.0/FLDAT(NG)
DO 400 I =1, N
VAL = RAN(ISEED)
BNDRY = X
ICL = 1
200 IF (ICL.EQ.NG) GOTO 300
IF (VAL.LT.BNDRY) GOTO 300
BNDRY = BNDRY + X
ICL = ICL + 1
GOTO 200
300 MEMGP(I) = ICL
400 CONTINUE
¢
500 CONTINUE
RETURN
END

O B

C

C Optimise the variances of a set of groups, by assigning

C the objects in groups such that they are minimally distant
C from group centres.

C

C Parameters:

C

c N, M, NG Numbers of rows, columns, groups,

Cc A(N,M) initial data,

C MEMGP(N) group memberships,

C NGPO minimum acceptable group cardinality,

C NUMGP(NG) cardinalities of groups,

C GPCEN(NG,M) group centres,

C COMP(NG) compactness values for the groups,

C CTOT sum of these compactnesses,

C IERR error indicator (should be zero).

C

C IERR = 1: invalid group number (<1 or >NG), - is number of
C groups correctly specified? IERR = 2: a group has < minimum
C allowed number of members, - reduce the number of groups and
C try again.

C
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¢

C

[eNoNoNoNoNoNoNoNoNoNoNoNoNoNoNoNoNoNeoNeoNeoNoNe)

Reference: Spaeth, 1985.
SUBROUTINE MINDST(A,N,M,MEMGP,NGPO,NUMGP,GPCEN,NG,
X COMP,CTOT, ITER, IERR)
DIMENSION A(N,M), MEMGP(N), NUMGP(NG), GPCEN(NG,M),
X COMP (NG)
BIG = 1.0E+30
ONE = 0.999
CMAX = BIG
ITER = 0

100 ITER = ITER + 1
IF (ITER.GT.15) GOTO 500
CALL GMEANS(A,N,M,MEMGP,NGPO,NUMGP,GPCEN,NG,IERR)
CALL COMPCT(A,N,M,NG,MEMGP,GPCEN,COMP,CTOT)
IF (IERR.NE.O) GOTO 500
IF (NG.LE.1) GOTO 500
IF (CTOT.GE.CMAX) GOTOD 500
CMAX = CTOT*0ONE
DO 400 I =1, N
X = BIG
DO 300 K = 1, NG
Y =0.0
DO 200 J =1, M
DIFF = GPCEN(K,J) - A(I,J)
Y = Y + DIFF*DIFF

200 CONTINUE
IF (Y.GE.X) GOTO 300
X=Y
ICL = K
300 CONTINUE
MEMGP(I) = ICL
400 CONTINUE
GOTO 100
500  RETURN
END
B B i o o B o O o A S A A

Optimise the variances of a set of groups, by exchanging
the objects between groups such that they are minimally
distant from group centres.

Parameters:

N, M, NG Numbers of rows, columns, groups,

A(N,M) initial data,

MEMGP (N) group memberships,

NGPO minimum acceptable group cardinality,

NUMGP (NG) cardinalities of groups,

GPCEN (NG, M) group centres,

COMP (NG) compactness values for the groups,

CTOT sum of these compactnesses,

IERR error indicator (should be zero).

IERR = 1: invalid group number (<1 or >NG), - is number of
groups correctly specified? IERR = 2: a group has < minimum
allowed number of members, - reduce the number of groups and
try again.

Reference: Spaeth, 1985.
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SUBROUTINE EXCH(A,N,M,MEMGP,NGPO,NUMGP,GPCEN, NG,
COMP,CTOT, ITER, IERR)

DIMENSION A(N,M), MEMGP(N), NUMGP(NG), GPCEN(NG,M),
COMP (NG)

BIG = 1.0E+30

ONE = 0.999

CALL GMEANS(A,N,M,MEMGP,NGPO,NUMGP,GPCEN,NG, IERR)
CALL COMPCT(A,N,M,NG,MEMGP ,GPCEN,COMP,CTOT)
IF (IERR.NE.O) GOTO 800
IF (NG.LE.1) GOTO 800
ITER = 0
I=0
IS =0
IS=1IS +1
IF (IS.GT.N) GOTO 800
I=1I+1
IF (I.LE.N) GOTOD 300
ITER = ITER + 1
IF (ITER.GT.15) GOTO 800
I=1
ICL = MEMGP(I)
NUM = NUMGP(ICL)
IF (NUM.LE.NGPO) GOTO 100
V = NUM
EQ = BIG
DO 600 K
X =0.
DO 400 J =1, M
DIFF = GPCEN(K,J) - A(I,J)
X = X + DIFF*DIFF
CONTINUE
IF (K.NE.ICL) GOTO 500
FRAC1 = V/(V-1.0)
EP = X*FRAC1
GOTO 600
FRAC2 = NUMGP (K)
FRAC = FRAC2/(FRAC2+1.0)
EK = FRAC*X
IF (EK.GE.EQ) GOTD 600
EQ = EK
I = K
W = FRAC2
CONTINUE
IF (EQ.GE.EPxQNE) GOTO 100
IS =0
COMP(ICL) = COMP(ICL) - EP
COMP(IQ) = COMP(IQ) + EQ
CTOT = CTOT - EP + EQ
FRAC1 = 1.0/(V-1.0)
FRAC2 = 1.0/(W+1.0)
DO 700 J =1, M
VAL = A(I,J)
GPCEN(ICL,J) = (VxGPCEN(ICL,J)-VAL)*FRAC1
GPCEN(IQ,J) = (WxGPCEN(IQ,J)+VAL)*FRAC2
CONTINUE
MEMGP(I) = IQ
NUMGP(ICL) = NUM - 1
NUMGP(IQ) = NUMGP(IQ) + 1
GOTO 200

1, NG

n o
ol
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C
800 CONTINUE
RETURN
END
[ o I T o T T T S e e
C
C Standardize to zero mean and unit standard deviation.
C
C Parameters:
C
c N, M, NG Numbers of rows, columns, groups,
c A(N,M) initial data, replaced by standardized values.
C
C ____________________________________________________________
SUBROUTINE STND(A,N,M)
DIMENSION A(N,M)
C
DO 500 J =1, M
X =0.0
DO 100 I =1, N
X =X+ ACI,J)
100 CONTINUE
XBAR = X/FLOAT(N)
X =0.0

DO 200 I =1, N
DIFF = A(I,J) - XBAR
X = X + DIFF*DIFF
200 CONTINUE
IF (X.LE.0.0) X = 1.0
X = 1.0/SQRT(X)
DO 300 I =1, N
A(I,J) = X*(A(I,J)-XBAR)

300 CONTINUE
500 CONTINUE

C
RETURN
END

CH++t++++++t+++t+++++t+H+ bR

C

C Determine means of the groups.

C

C Parameters:

C

c N, M, NG Numbers of rows, columns, groups,

Cc A(N,M) initial data,

C MEMGP(N) group memberships,

C NGPO minimum acceptable group cardinality,

C NUMGP(NG) cardinalities of groups,

C GPCEN(NG,M) group centres,

C IERR error indicator (should be zero).

C

c _____________________________________________________________
SUBROUTINE GMEANS(A,N,M,MEMGP,NGPO,NUMGP,GPCEN,NG,IERR)
DIMENSION A(N,M), MEMGP(N), NUMGP(NG), GPCEN(NG,M)

C

DO 200 K = 1, NG
NUMGP(K) = 0
DO 100 J =1, M
GPCEN(X,J) = 0.0
100 CONTINUE
200  CONTINUE

97



98 CHAPTER 3. CLUSTER ANALYSIS
DO 500 I =1, N
ICL = MEMGP(I)
IF (ICL.GE.1.AND.ICL.LE.NG) GOTD 300
IERR = 1
RETURN
300 CONTINUE
NUMGP(ICL) = NUMGP(ICL) + 1
DO 400 J =1, M
GPCEN(ICL,J) = GPCEN(ICL,J) + A(I,J)
400 CONTINUE
500 CONTINUE
C
DO 800 K = 1, NG
NUM = NUMGP (K)
IF (NUM.GE.NGPO) GOTO 600
IERR = 2
RETURN
600 CONTINUE
X = 1.0/FLOAT(NUM)
DO 700 J =1, M
GPCEN(K,J) = GPCEN(K,J)*X
700 CONTINUE
800  CONTINUE
C
RETURN
END
L a2 2 B B e e
C
C Determine compactness of the groups (i.e. their variances).
C
C Parameters:
C
c N, M, NG Numbers of rows, columns, groups,
Cc A(N,M) initial data,
C MEMGP(N) group memberships,
C GPCEN(NG,M) group centres,
C COMP(NG) variances of groups (output),
C CTOT sum of these variances.
C
c ______________________________________________________________
SUBROUTINE COMPCT(A,N,M,NG,MEMGP,GPCEN,COMP,CTOT)
DIMENSION A(N,M), MEMGP(N), GPCEN(NG,M), COMP(NG)
C
CTOT = 0.0
DO 100 K = 1, NG
COMP(K) = 0.0
100 CONTINUE
C
DO 300 I =1, N
ICL = MEMGP(I)
X =0.0
DO 200 J =1, M
DIFF = GPCEN(ICL,J) - A(I,J)
X = X + DIFF*DIFF
200 CONTINUE
COMP(ICL) = COMP(ICL) + X
CTOT = CTOT + X
300 CONTINUE
C
RETURN

END
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3.4.4 Input Data

The input data is identical to that described in the Principal Components Anal-
ysis chapter.

3.4.5 Sample Output

For the minimum variance criterion, we find the following upper dendrogram
result. Note that class numbers are purely sequence numbers.

SEQ NOS 2CL 3CL 4CL 5CL 6CL 7CL 8CL 9CL

1 1 1 1 1 1 1 1 1
2 1 1 1 1 1 1 1
3 1 1 1 1 1 1 1 1
4 1 1 1 1 1 1 1 1
5 1 1 1 1 1 1 1 1
6 1 1 1 1 1 1 1 1
7 1 1 1 1 1 To7T 7
8 1 1 1 1 1 To7T 7
9 1 1 1 1 1 T 7T 9
10 1 1 1 1 1 7T 7T 9
11 1 1 4 4 4 4 4 4
12 1 1 4 4 4 4 4 4
13 1 1 4 4 4 4 8 8
14 1 1 4 4 4 4 8 8
15 1 1 4 5 5 5 5 b
2 2 2 2 2 2 2 2
2 2 2 2 6 6 6 6
2 3 3 3 3 3 3 3
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2432849.25

608270.06
196383.22
30684.13
30549.01
30261.67
7236.88
3428.06

7 9 4 8 5 2 6 3

1

CLUSTERS 1 TO 9
(TOP 8 LEVELS OF HIERARCHY).

CRITERION
VALUES.

The following dendrogram output is obtained for the single link method.

SEQ NOS 2CL 3CL 4CL 5CL 6CL 7CL 8CL 9CL

10
11
12
13
14
15
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691853.06 | ==
64923.62 |mm -
I
I
61098.02 | | —--
I
I
20083.52 |mm -
2809.86 |-—————— |
2565.14 | T
2539.18

1519.50

CRITERION CLUSTERS 1 TO 9
VALUES. (TOP 8 LEVELS OF HIERARCHY).

For the minimum distance partitioning method, with two classes requested, a
solution was found with sum of variances equal to 914415.4375, after 5 iterations.
This solution assigned the first 15 objects to class 1 and the final 3 objects to
class 2.

For the exchange method, and again with two classes requested, the sum of
variances was 906848.4375 after 2 iterations. For this solution, only the final
two objects comprised class 2.

For three classes, and the exchange method, the sum of variances was 297641.7813
after 1 iteration. The classes were: object 18; objects 15, 16, 17; and all remain-
ing objects.

3.4.6 Java Application

For some core functionality, we use mathematical class libraries available from
Visual Numerics. Therefore this must be on your system before you use the
following program. Of course the Java Development Kit, JDK, must also be
available. We used version 1.1.6 of the JDK.
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import VisualNumerics.math.*;
import java.text.x;

/%

Carry out pairwise agglomerations. For n items, therefore there

are n-1 agglomerations. Represent the cluster labels is an nxn
cluster label matrix. Column no. n will be the singleton labels,

1 to n. Column no. n-1 will have n-1 unique values (or label sequence
numbers). Column no. n-2 will have n-2 unique values. Column no. 1
will have the value 1 only, implying that all n items are in one
cluster.

ClustMat is our agglomeration "engine". It looks after labeling
only, and is independent of any agglomerative clustering criterion.

Other utility methods:

Dissim ... calculate dissimilarity matrix

getNNs ... get nearest neighbors and associated
nearest neighbor dissimilarities

getSpaces ... helping in output formating

printMatrix ... print matrix of doubles

printMatrixI ... print matrix of integers

printVect ... print vector of doubles

printVectlI ... print vector of integers

main does the following:

1. Generates data. (To be changed later to arbitrary input data streams)

2. Calculate pairwise dissimilarities, and determines nearest neighbors
and corresponding dissimilarities.

3. Determines the closest nearest neighbors.

Carries out an agglomeration in ClustMat.

5. Updates the pairwise dissimilarity matrix, and then, on the basis
of this, the nearest neighbors, and the nearest neighbor
dissimilarities.

6. Repeats while no. of clusters is greater than 2.

IS

Note how O and 999.0 values are used in, resp., the nearest neighors and
nearest neighbor dissimilarities, to indicate when items are processed and
no longer exist as singletons.

Step 5 here determines the agglomerative clustering criterion. We are
currently using the single link method only.

F. Murtagh, f.murtagh@qub.ac.uk, Nov. 1999

*/

public class HCL
{
public static final double MAXVAL = 1.0e8;

// Calculate dissimilarity n x n array

public static double[][] Dissim(int nrow, int ncol, double[][] A)
{

// Adiss will contain the dissimilarity data to be returned
double[][] Adiss = new double[nrow] [nrow];

for (int il = 0; il < nrow; il++)
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{
for (int i2 = 0; i2 < nrow; i2++)
{
Adiss[i1][i2] = 0.0;
for (int j = 0; j < ncol; j++)
{
Adiss[i1][i2] = Adiss[i1][i2] +
(A[i11[3] - ACi21[j1)*(AL4L1103] - ACi2]105D);
}
Adiss[i1][i2] = Math.sqrt(Adiss[i1][i2]);
}
}
return Adiss;
}
// Get NNs and NN dissimilarities
public static void getNNs(int nrow, double[][] diss,
int[] nn, double[]nndiss)
{
// nn and nndiss will contain data to be returned
int minobs = -1;
for (int il = 0; il < nrow; il++)
{
minobs = -1;
double mindist = 999.0;
for (int i2 = 0; i2 < nrow; i2++)
{
if ((diss[i1][i2] < mindist) && (il !'= i2)) {
mindist = diss[i1][i2];
minobs = i2;
¥
}
nn[il] = minobs + 1;
nndiss[il] = mindist;
}

// Return type void => no return stmt

}

// Update cluster structure matrix
public static void ClustMat(int nrow, int[]J[] clusters,
int clustl, int clust2, int ncl)

{

// If either clust* is not initialized, then we must init. clusters

if ((clustl == 0) || (clust2 == 0)) {
for (int j = 0; j < nrow; j++) {
for (int i = 0; i < nrow; i++) {
clusters[i] [j1 = 0;

System.out.println("check on ncl:");
System.out.println(ncl);

// Adjust for O-sequencing in extreme right-hand term.
for (int i = 0; i < nrow; i++) clusters[i][ncl-1] =i + 1;
return;

// For some agglomeration, we are told that label clustl and
// label clust2, among all labels in col. ncl-1 (ncl ranges over
// 0 thru nrow-1, are to be agglomerated

103
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int ncll = ncl - 1;
for (int i = 0; i < nrow; i++) {
clusters[i] [ncl1l] = clusters[i][ncl];
if (clusters[i][ncll] == clust2) clusters[i][ncli] = clusti;
}
// Return type void => no return stmt

}

// Little method for helping in output formating
public static String getSpaces(int n) {
StringBuffer sb = new StringBuffer(n);

for (int i = 0; i < n; i++) sb.append(’ ’);
return sb.toString();

}

// Utility for printing a matrix

public static void printMatrix(int nl, int n2, double[][] m)

{

// Some definitions for handling output formating

NumberFormat myFormat = NumberFormat.getNumberInstance();
FieldPosition fp = new FieldPosition(NumberFormat.INTEGER_FIELD);
myFormat .setMaximumIntegerDigits(5);
myFormat.setMaximumFractionDigits(4);
myFormat.setMinimumFractionDigits(4);
for (int i=0; i<nl; i++)

{
// Print each row, elements separated by spaces
for (int j=0; j<n2; j++)
// Following unfortunately doesn’t format at all
// System.out.print(m[i] [j]1 + " ");
{
String valString = myFormat.format(

m[i][j], new StringBuffer(), £fp).toString();
valString = getSpaces(5 - fp.getEndIndex()) + valString;
System.out.print(valString);

}
// Start a new line at the end of a row
System.out.println();
}

// Leave a gap after the entire matrix
System.out.println();
}

// Utility for printing an integer matrix (no operater overloading!)
public static void printMatrixI(int nl1, int n2, int[][] m)
{
// Some definitions for handling output formating
NumberFormat myFormat = NumberFormat.getNumberInstance();
FieldPosition fp = new FieldPosition(NumberFormat.INTEGER_FIELD);
myFormat .setMaximumIntegerDigits(5);
for (int i=0; i<nl; i++)
{
// Print each row, elements separated by spaces
for (int j=0; j<n2; j++)
// Following unfortunately doesn’t format at all
// System.out.print(m[i] [j1 + " ");
{
String valString = myFormat.format(
m[i][j], new StringBuffer(), fp).toString();
// 4 character locations per integer number
valString = getSpaces(4 - fp.getEndIndex()) + valString;
System.out.print(valString);
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}
// Start a new line at the end of a row
System.out.println();
}
// Leave a gap after the entire matrix
System.out.println();
}

// Utility for printing a vector
public static void printVect(double[] m)
{

// Some definitions for handling output formating
NumberFormat myFormat = NumberFormat.getNumberInstance();
FieldPosition fp = new FieldPosition(NumberFormat.INTEGER_FIELD);
myFormat .setMaximumIntegerDigits(5);
myFormat.setMaximumFractionDigits(4);
myFormat.setMinimumFractionDigits (4);
int len = m.length;
for (int i=0; i<len; i++)

{
// Following would be nice, but doesn’t format adequately
// System.out.print(m[i] + " ");
String valString = myFormat.format(
m[il, new StringBuffer(), fp).toString();
valString = getSpaces(4 - fp.getEndIndex()) + valString;
System.out.print(valString);
}
// Start a new line at the row end
System.out.println();
// Leave a gap after the entire vector
System.out.println();
}

// Utility for printing an integer vector (no operator overloading!)
public static void printVectI(int[] m)
{
// Some definitions for handling output formating
NumberFormat myFormat = NumberFormat.getNumberInstance();
FieldPosition fp = new FieldPosition(NumberFormat.INTEGER_FIELD);
myFormat.setMaximumIntegerDigits(4);
int len = m.length;
for (int i=0; i<len; i++)
{
// Following would be nice, but doesn’t format adequately
// System.out.print(m[i] + " ");
String valString = myFormat.format(
m[il, new StringBuffer(), fp).toString();
valString = getSpaces(3 - fp.getEndIndex()) + valString;
System.out.print(valString);
}
// Start a new line at the row end
System.out.println();
// Leave a gap after the entire vector
System.out.println();
}

// The main method contains the body of the program
public static void main(String[] argv)
{
// Define dimensions of the matrix we’ll use
int nrow = 18;
int ncol = 16;
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int ncl = nrow; // Initial number of clusters

int[J[] clusters = new int[nrow][nrow]; // cluster label matrix
int[] nn = new int[nrow]; // cluster nearest neigh’s
double[] nndiss = new double[nrow]; // nearest neigh diss’s
int minobs = -1;

// Define the matrix that we are going to use

double[][] A = {
{ 3.0, 3.0, 3.0, 3.0, 3.0, 3.0, 35.0, 45.0,
53.0, b5.0, 58.0, 113.0, 113.0, 86.0, 67.0, 90.0},
{ 3.5, 3.5, 4.0, 4.0, 4.5, 4.5, 46.0, 59.0,
63.0, b58.0, 58.0, 125.0, 126.0, 110.0, 78.0, 97.0},
{ 4.0, 4.0, 4.5, 4.5, 5.0, 5.0, 48.0, 60.0,
68.0, 65.0, 65.0, 123.0, 123.0, 117.0, 87.0, 108.0%},
{ 5.0, 5.0, 5.0, 5.5, 5.5, 5.5, 46.0, 63.0,
70.0, 64.0, 63.0, 116.0, 119.0, 115.0, 97.0, 112.0},
{ 6.0, 6.0, 6.0, 6.0, 6.5, 6.5, 51.0, 69.0,
77.0, 70.0, 71.0, 120.0, 122.0, 122.0, 96.0, 123.0},
{ 1.0, 1t.0, 1t1.0, 11.0, 11.0, 11.0, 64.0, 75.0,
81.0, 79.0, 79.0, 112.0, 114.0, 113.0, 98.0, 115.0},
{ 20.0, 20.0, 20.0, 20.0, 20.0, 20.0, 76.0, 86.0,
93.0, 92.0, 91.0, 104.0, 104.5, 107.0, 97.5, 104.0},
{ 30.0, 30.0, 30.0, 30.0, 30.1, 30.2, 84.0, 96.0,
98.0, 99.0, 96.0, 101.0, 102.0, 99.0, 94.0, 99.0},
{ 30.0, 33.4, 36.8, 40.0, 43.0, 45.6, 100.0, 106.0,
106.0, 108.0, 101.0, 99.0, 98.0, 99.0, 95.0, 95.0%},
{ 42.0, 44.0, 46.0, 48.0, 50.0, 51.0, 109.0, 111.0,
110.0, 110.0, 103.0, 95.5, 95.5, 95.0, 92.5, 92.0},
{ 60.0, 61.7, 63.5, 65.5, 67.3, 69.2, 122.0, 124.0,
124.0, 121.0, 103.0, 93.2, 92.5, 92.2, 90.0, 90.8%},
{ 70.0, 70.1, 70.2, 70.3, 70.4, 70.5, 137.0, 132.0,
134.0, 128.0, 101.0, 91.7, 90.2, 88.8, 87.3, 85.8%},
{ 78.0, 77.6, 77.2, 76.8, 76.4, 76.0, 167.0, 159.0,
152.0, 144.0, 103.0, 89.8, 87.7, 85.7, 83.7, 81.8%},
{ 98.9, 97.8, 96.7, 95.5, 94.3, 93.2, 183.0, 172.0,
162.0, 152.0, 102.0, 87.5, 85.3, 83.3, 81.3, 79.3},
{ 160.0, 157.0, 155.0, 152.0, 149.0, 147.0, 186.0, 175.0,
165.0, 156.0, 120.0, 87.0, 84.9, 82.8, 80.8, 79.0%},
{ 272.0, 266.0, 260.0, 254.0, 248.0, 242.0, 192.0, 182.0,
170.0, 159.0, 131.0, 88.0, 85.8, 83.7, 81.6, 79.6%},
{ 382.0, 372.0, 362.0, 352.0, 343.0, 333.0, 205.0, 192.0,
178.0, 166.0, 138.0, 86.2, 84.0, 82.0, 79.8, 77.5%},
{ 770.0, 740.0, 710.0, 680.0, 650.0, 618.0, 226.0, 207.0,
195.0, 180.0, 160.0, 82.9, 80.2, 77.7, 75.2, T72.7}
};

// Print it out
System.out.println("A is our input matrix:");
printMatrix(nrow, ncol, A);

// Get dissimilarities

double[][] diss = Dissim(nrow, ncol, A);

// Print it out

System.out.println("Dissimilarity matrix for amalysis:");
printMatrix(nrow, nrow, diss);

// Get nearest neighbors and nearest neighbor dissimilarities
getNNs(nrow, diss, nn, nndiss);

System.out.println("Nearest neighbors:");

printVectI(nn);
System.out.println("Nearest neighbors dissimilarities:");
printVect(nndiss);
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// Get closest neighbors, using nndiss, followed by nn
int clustl = 0;
int clust2 =
int cli
int cl2 =
// Call to initialize
ncl = nrow;
ClustMat (nrow, clusters, clustl, clust2, ncl);
System.out.println("No. of clusters: " + ncl +
" Cluster label matrix:");
printMatrixI(nrow, nrow, clusters);

0
0;
0

minobs = -1;
double mindist = MAXVAL;
for (int i = 0; i < ncl; i++) {
if (nndiss[i] < mindist) {
mindist = nndiss[i];
minobs = ij;

}
// minobs is one cluster label, the other is nn[minobs]
// Adjust for O-sequencing
if (minobs < nn[minobs]) {
clustl = minobs + 1;
clust2 = nn[minobs];
}
if (minobs > nn[minobs]) {
clust2 = minobs + 1;
clustl = nn[minobs];

}
// Now we have clustl < clust2, and we’ll agglomerate
System.out.println("clust #1: " + clustl +

"; clust #2: " + clust2 +
", # clusters left: " + ncl);

// Now we will carry out an agglomeration
ncl = ncl - 1;
ClustMat(nrow, clusters, clustl, clust2, ncl);
System.out.println("#clusters left: " + ncl +
": cluster label matrix: ");

printMatrixI(nrow, nrow, clusters);

// Update the following: diss, nndiss
// Strategy:

// nn[clust2] ceases to exist; similarly nndiss[clust2]

// ... for all occurrences of clust2

// nn[clustl] must be updated, as must nndiss[clustil]
// Only other change is for any nn[i] such that nn[i]
// ... clustl or clust2; this must be updated.

// ler volet de notre strategie, update diss

cll = clustl - 1;

cl2 = clust2 - 1;

for (int i = 0; i < nrow; i++) {
// Slink, to begin with
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diss[c11][i]
diss[i][c11]

Math.min(diss[c11][i], diss[cl2][il);
diss[cl11][i];

¥
// Cluster label clust2 is knocked out
for (int i = 0; i < nrow; i++) {
// Unweighted average distance, to begin with
diss[c12][i] 9999.0;
diss[i] [c12] diss[c12][i];

¥

/*
System.out.println("Updated diss. matrix for analysis:");
printMatrix(nrow, nrow, diss);

*/

// Get nearest neighbors and nearest neighbor dissimilarities
getNNs(nrow, diss, nn, nndiss);

System.out.println("Nearest neighbors of items 1, 2, ... n:");
printVectI(nn);
System.out.println("Corresponding nearest neighbors dissimilarities:");
printVect(nndiss);
}

while (ncl > 1);

Byte code is created for this program, HCL. java, by the command: javac
HCL. java. The program is then run as follows: java HCL.

Output for the single link method (all that is currently implemented) is as
follows.

A is our input matrix:

3.0000 3.0000 3.0000 3.0000 3.0000 3.0000 35.0000
45.0000 53.0000 55.0000 58.0000 113.0000 113.0000 86.0000
67.0000 90.0000

3.5000 3.5000 4.0000 4.0000 4.5000 4.5000 46.0000
59.0000 63.0000 58.0000 58.0000 125.0000 126.0000 110.0000
78.0000  97.0000

4.0000 4.0000 4.5000 4.5000 5.0000 5.0000 48.0000
60.0000 68.0000 65.0000 65.0000 123.0000 123.0000 117.0000
87.0000 108.0000

5.0000 5.0000 5.0000 5.5000 5.5000 5.5000 46.0000
63.0000 70.0000 64.0000 63.0000 116.0000 119.0000 115.0000
97.0000 112.0000

6.0000 6.0000 6.0000 6.0000 6.5000 6.5000 51.0000
69.0000 77.0000 70.0000 71.0000 120.0000 122.0000 122.0000
96.0000 123.0000
11.0000 11.0000 11.0000 11.0000 11.0000 11.0000 64.0000
75.0000 81.0000 79.0000 79.0000 112.0000 114.0000 113.0000
98.0000 115.0000
20.0000 20.0000 20.0000 20.0000 20.0000 20.0000 76.0000
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86.
97.
30.
96.
94.
30.
106.
95.
42,
111.
92.
60.
124.
90.
70.
132.
87.
78.
159.
83.
98.
172.
81.
160.
175.
80.
272.
182.
81.
382.
192.
79.
770.
207.
75.

0000
5000
0000
0000
0000
0000
0000
0000
0000
0000
5000
0000
0000
0000
0000
0000
3000
0000
0000
7000
9000
0000
3000
0000
0000
8000
0000
0000
6000
0000
0000
8000
0000
0000
2000

93.
104.
30.
98.
99.
.4000
106.
95.
44,
110.
92.
61.
124,
90.
70.
134.
85.
T7.
152.
81.
97.
162.
79.
157.
165.
79.
266.
170.
79.
372.
178.
TT.
740.
195.
72.

33

0000
0000
0000
0000
0000

0000
0000
0000
0000
0000
7000
0000
8000
1000
0000
8000
6000
0000
8000
8000
0000
3000
0000
0000
0000
0000
0000
6000
0000
0000
5000
0000
0000
7000

92

30.
99.

36.
108.

46.
110.

63.
121.

70.
128.

T7.
144,

96.
152.

155.
156.

260.
159.

362.
166.

710.
180.

.0000

0000
0000

8000
0000

0000
0000

5000
0000

2000
0000

2000
0000

7000
0000

0000
0000

0000
0000

0000
0000

0000
0000

91

30.
96.

40.
101.

48.
103.

65.
103.

70.
101.

76.
103.

95.
102.

152.
120.

254.
131.

352,
138.

680.
160.

Dissimilarity matrix for analysis:

0.
126.
451.

38.
112.
441.

51.
104.
436.

56.
101.
434.

72.

0000
6541
4413
6264
9971
6547
6478
4296
8434
0424
3385
7181
2392

38.
156.
680.

0.
142.

672

666

6264
1773
1981
0000
6063

.4206

19.
134.
668.

29.
131.
.4868
42,

8368
5484
5701
6100
7851

9826

51
176
917

19.
164.
910.

0.
156.

907

14.
154.

905
24

.6478
.2605
.4608
8368
0937
7760
0000
9626
.4601
5172
3033
.4252
.2899

56.
222,

1731

29.
210.
1726.
14.
204.
1724.
0.
201.
1722.

20

.0000

0000
0000

0000
0000

0000
0000

5000
0000

3000
0000

8000
0000

5000
0000

0000
0000

0000
0000

0000
0000

0000
0000

0424
2397
L4171
6100
6672
5418
5172
1969
0412
0000
5972
0917
.2793

104

30
101

43.
99.

50.
95.

67.
93.

70

91.

76

89.

94.
87.

149.
87.

248.
88.

343.
86.

650.
82.

72.

245

42,
234.

24.
228.

20.
225.

.0000

.1000
.0000

0000
0000

0000
5000

3000
2000

.4000
7000

.4000
8000

3000
5000

0000
0000

0000
0000

0000
2000

0000
9000

2392
.4764

9826
0655

2899
0536

2793
6435

.0000

104.

30.
102.

45.
98.

51.
95.

69.
92.

70.
90.

76.
87.

93.
85.

147.
84.

242.
85.

333.
84.

618.
80.

79.
290.

55.

278

41.
272.

36.
270.

27

5000

2000
0000

6000
0000

0000
5000

2000
5000

5000
2000

0000
7000

2000
3000

0000
9000

0000
8000

0000
0000

0000
2000

0127
7754

9196
.4312

0427
5305

3834
3477

L9911

109

107.

84.
99.

100.
99.

109.
95.

122,
92.

137.
88.

167.
85.

183.
83.

186.
82.

192.
83.

205.
82.

226.
7.

104.
339.

87
327.

76.
321.

72.
319.

65.

0000

0000
0000

0000
0000

0000
0000

0000
2000

0000
8000

0000
7000

0000
3000

0000
8000

0000
7000

0000
0000

0000
7000

2809
1081

.4786

2640

5637
8018

8989
6283

9773
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94.9613 124.8137 147.7236 194.7878 218.8425 262.7639 312.2335
428.0790 660.9620 900.4935 1718.1477
79.0127 55.9196 41.0427 36.3834 27.9911 0.0000 38.9808
68.7710 99.1340 122.3182 170.6074 194.5941 238.5002 288.5993
406.4476 642.1338 882.9752 1702.7696
104.2809 87.4786 76.5637 72.8989 65.9773 38.9808 0.0000
31.3935 62.1744 85.5468 134.8165 158.7037 202.6244 253.2628
372.9513 611.8258 854.1655 1676.4621
126.6541 112.9971 104.4296 101.3385 94.9613 68.7710 31.3935
0.0000 33.5316 55.2485 104.4500 128.4999 173.1644 223.4924
342.9308 ©583.0440 826.0606 1649.6174
166.1773 142.6063 134.5484 131.7851 124.8137 99.1340 62.1744
33.5316 0.0000 25.7470 75.2944 99.7116 143.7613 194.3000
315.5136 558.2442 802.3565 1627.9910
176.2605 164.0937 156.9626 154.3033 147.7236 122.3182 85.5468
55.2485  25.7470 0.0000 50.6472 T74.9667 120.4122 170.1757
290.6911 534.1972 778.6850 1604.9461
222,2397 210.6672 204.1969 201.5972 194.7878 170.6074 134.8165
104.4500 75.2944  50.6472 0.0000 27.2613 76.0380 122.1726
240.7587 486.0941 731.3964 1559.1582
245.4764 234.0655 228.0536 225.6435 218.8425 194.5941 158.7037
128.4999 99.7116 74.9667 27.2613 0.0000 50.3903 96.1948
219.2679 467.6714 T713.7365 1542.5976
290.7754 278.4312 272.5305 270.3477 262.7639 238.5002 202.6244
173.1644 143.7613 120.4122 76.0380 50.3903 0.0000 53.0081
190.5448 444.3601 691.4116 1522.2374
339.1081 327.2640 321.8018 319.6283 312.2335 288.5993 253.2628
223.4924 194.3000 170.1757 122.1726 96.1948 53.0081 0.0000
141.7163 396.1628 643.0442 1474.1984
451.4413 441.6547 436.8434 434.7181 428.0790 406.4476 372.9513
342.9308 315.5136 290.6911 240.7587 219.2679 190.5448 141.7163
0.0000 254.8011 501.8350 1333.2201
680.1981 672.4206 668.5701 666.4868 660.9620 642.1338 611.8258
583.0440 558.2442 534.1972 486.0941 467.6714 444.3601 396.1628
254.8011 0.0000 247.1801 1078.6593
917.4608 910.7760 907.4601 905.4252 900.4935 882.9752 854.1655
826.0606 802.3565 778.6850 731.3964 713.7365 691.4116 643.0442
501.8350 247.1801 0.0000 831.7770
1731.4171 1726.5418 1724.0412 1722.0917 1718.1477 1702.7696 1676.4621
1649.6174 1627.9910 1604.9461 1559.1582 1542.5976 1522.2374 1474.1984
1333.2201 1078.6593 831.7770 0.0000

Nearest neighbors:
2 3 4 3 4 5 8 710 912 11 12 13 14 17 16 17

Nearest neighbors dissimilarities:
38.6264 19.8368 14.5172 14.5172 20.2793 27.9911 31.3935 31.3935
25.7470 25.7470 27.2613 27.2613 50.3903 53.0081 141.7163 247.1801
247.1801 831.7770



111

3.4. SOFTWARE AND SAMPLE IMPLEMENTATION

check on ncl:

18
No.

Cluster label matrix:

18

of clusters:

10
11
12
13

14
15
16
17
18

18

clust #2: 4; # clusters left:

3;

clust #1:

17; cluster label matrix:

#clusters left:

10
11
12
13

10
11
12
13

0

0

0
0
0
0
0
0
0

0
0
0
0
0
0
0

14
15
16
17
18

14
15
16
17
18

. n:

Nearest neighbors of items 1, 2,

17 16 17

2 3 2 0 3 5 8 710 912 11 12 13 14

31.3935 31.3935

19.8368 999.0000 20.2793 27.9911

19.8368

Corresponding nearest neighbors dissimilarities:
38.6264

25.7470 25.7470 27.2613 27.2613 50.3903 53.0081 141.7163 247.1801

247.1801 831.7770
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17

clust #2: 3; # clusters left:

2;

clust #1:

16; cluster label matrix:

#clusters left:

10
11
12
13

10
11
12
13

10
11
12
13

0

0

0
0
0
0
0
0
0

0
0
0
0
0
0
0

14
15
16
17
18

14
15
16
17
18

14
15
16
17
18

Nearest neighbors of items 1, 2,

2 5 0 0 2 5 8 710 912 11 12 13 14 17 16 17

Corresponding nearest neighbors dissimilarities:

31.3935 31.3935

38.6264 20.2793 999.0000 999.0000 20.2793 27.9911

25.7470 25.7470 27.2613 27.2613 50.3903 53.0081 141.7163 247.1801

247.1801 831.7770

16

clust #2: 5; # clusters left:

2;

clust #1:

cluster label matrix:

15;

#clusters left:

10
11
12
13

10
11
12
13

10
11
12
13

10
11
12
13

0

0

0
0
0
0
0
0
0

0
0
0
0
0
0
0

14
15
16
17
18

14
15
16
17
18

14
15
16
17
18

14
15
16
17
18
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Nearest neighbors of items 1, 2, ... n:
2 6 0 0 0 2 8 710 9 12 11 12 13 14 17 16 17

Corresponding nearest neighbors dissimilarities:
38.6264 27.9911 999.0000 999.0000 999.0000 27.9911
25.7470 25.7470 27.2613 27.2613 50.3903 53.0081

247.1801 831.7770

clust #1: 9; clust #2: 10; # clusters left: 15
#tclusters left: 14; cluster label matrix:
0 0 0 0 0 0

O OO OO OO OO0 O OO OOoO oo
O O O O O O OO OO O OO O OO0 o
O O O O O O OO OO O OO O OO0 o
O O O OO O OO OO O OO0 OO O OO
O OO OO OO OO0 O OO0 OO oo
O OO OO OO OO0 O OO OOoO oo
O OO OO OO OO0 OO0 OO oo
O O O O O O OO OO O OO O OO0 o
O O O O O O OO OO O OO O OO0 o
O O O OO O OO OO O OO0 OO O OO
O OO OO OO OO0 O OO0 OO oo
O OO OO OO OO0 OO0 OO oo
O OO OO OO OO0 O OO0 OO oo

Nearest neighbors of items 1, 2, ... n:
2 6 0 0 0 2 8 7 8 012 11 12 13 14 17 16 17

Corresponding nearest neighbors dissimilarities:
38.6264 27.9911 999.0000 999.0000 999.0000 27.9911
33.5316 999.0000 27.2613 27.2613 50.3903 53.0081

247.1801 831.7770

clust #1: 11; clust #2: 12; # clusters left: 14
#clusters left: 13; cluster label matrix:
0 0 0

o
o
o

O OO O O OO oo
O O O O O O O OO
O O O O O O O OO
O O O O O OO O OO0
O OO OO OO O OO0
O OO OO OO oo
O OO OO OO O OO0
O O O O O O O OO
O O O O O O O OO
O O O O O OO O OO0
O OO OO OO O OO0
O OO OO OO O OO0
O W O ~NOONNNDDNDE
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31.3935 31.3935
141.7163 247.1801

1 1 1 1 1
2 2 2 2 2
2 2 2 3 3
2 2 2 3 4
2 2 5 5 b
6 6 6 6 6
T 7T 1T 1T 7
8 8 8 8 8
9 9 9 9 9
9 10 10 10 10
11 11 11 11 11
12 12 12 12 12
13 13 13 13 13
14 14 14 14 14
15 15 15 15 15
16 16 16 16 16
17 17 17 17 17
18 18 18 18 18

31.3935 31.3935
141.7163 247.1801

O O 0NN NNDN-
O 00 ~NONNDNDNE
O 00 N OTNNNE
O 00 ~NO Ul wwN -
© 00 N O WN -

-
(@}
-
o
-
o
-
o
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o o o o0 o o o o o o o o0 11 11 11 11 11 11
o o o o o o o o o o o o0 11 12 12 12 12 12
o o o o o o o o o o o o0 13 13 13 13 13 13
o o o o0 o o o o0 O O 0 0 14 14 14 14 14 14
o o o o0 o o o o0 O o 0 o0 15 15 15 15 156 15
6o o o o0 o o o o0 O o o0 o0 16 16 16 16 16 16
o o o o o o o o o o o o0 17 17 17 1T 17 17
o o o o o o o o o o o o0 18 18 18 18 18 18
Nearest neighbors of items 1, 2, ... n:

2 6 0 00 2 8 7 8 013 O 11 13 14 17 16 17

Corresponding nearest neighbors dissimilarities:
38.6264 27.9911 999.0000 999.0000 999.0000 27.9911 31.3935 31.3935
33.5316 999.0000 50.3903 999.0000 50.3903 53.0081 141.7163 247.1801
247.1801 831.7770

clust #1: 2; clust #2: 6; # clusters left: 13
#clusters left: 12; cluster label matrix:

0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1
0 0 0 0 0 0 0 0 0 0 0 2 2 2 2 2 2 2
0 0 0 0 0 0 0 0 0 0 0 2 2 2 2 2 3 3
0 0 0 0 0 0 0 0 0 0 0 2 2 2 2 2 3 4
0 0 0 0 0 0 0 0 0 0 0 2 2 2 2 5 5 5
0 0 0 0 0 0 0 0 0 0 0 2 6 6 6 6 6 6
0 0 0 0 0 0 0 0 0 0 0 7 7 7 7 7 7 7
0 0 0 0 0 0 0 0 0 0 0 8 8 8 8 8 8 8
0 0 0 0 0 0 0 0 0 0 0 9 9 9 9 9 9 9
0 0 0 0 0 0 0 0 0 0 0 9 9 9 10 10 10 10
0 0 0 0 0 0 0 0 0 0 0 11 11 11 11 11 11 11
0 0 0 0 0 0 0 0 0 0 o 11 11 12 12 12 12 12
0 0 0 0 0 0 0 0 0 0 0 13 13 13 13 13 13 13
0 0 0 0 0 0 0 0 0 0 0 14 14 14 14 14 14 14
0 0 0 0 0 0 0 0 0 0 0 15 15 15 15 15 15 15
0 0 0 0 0 0 0 0 0 0 0O 16 16 16 16 16 16 16
0 0 0 0 0 0 0 0 0 0 o 17 17 17 17 17 17 17
0 0 0 0 0 0 0 0 0 0 0 18 18 18 18 18 18 18
Nearest neighbors of items 1, 2, ... n:

21 0 0 0 0 8 7 8 013 0 11 13 14 17 16 17

Corresponding nearest neighbors dissimilarities:
38.6264 38.6264 999.0000 999.0000 999.0000 999.0000 31.3935 31.3935
33.5316 999.0000 50.3903 999.0000 50.3903 53.0081 141.7163 247.1801
247.1801 831.7770

clust #1: 7; clust #2: 8; # clusters left: 12

#tclusters left: 11; cluster label matrix:
0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1
0 0 0 0 0 0 0 0 0 0 2 2
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O O O O OO OO OO OOOoO O oo
O O O O OO OO OO OO OO OO
O O O O OO OO OO OO OO OO
O O O O OO OO OO OO OO OO
O O O O OO OO OO OOOoO O oo
O O O O OO OO OO OOOoO O oo

O O O O OO OO OO OOOOo oo

O O O OO OO OOOOOO O OO0

Nearest neighbors of items 1, 2,

2 1

O O O OO OO OOOOOO O OO0

O O O OO OO OOOOOO O OO0

. e

O N ~NDNDDNDDNDN

11
13
14
15
16
17
18

0 0 00 9 0 7 013 011 13 14

O 00 ~NNDNDNDN

11
13
14
15
16
17
18

17 16 17

Corresponding nearest neighbors dissimilarities:
38.6264 38.6264 999.0000 999.0000 999.0000 999.0000 33.5316 999.0000
141.7163 247.1801

33.5316 999.0000 50.3903 999.0000 50.3903 53.0081

247.1801 831.7770

clust #1: 7;

o
o
o

0

O O O O OO OOOO OO0 OO oo
O O O OO OO OO0 OO0 OO OO
O O O OO OO OO0 OO0 OO OO
O O O O O O O OO OO OO0 OO OO
O O O OO OO OO0 OO0 OOOo oo
O O O O OO OOOO OO0 OO oo

O OO OO OO OO0 O OO0 OO oo

0

O O OO OO OO OOOOOO O OO0

Nearest neighbors of items 1, 2,

2 1

0 0 0 02 0 O 013

0

O OO O OO OO OOOOOO O OO0

N NNDNDDNDDNDNDNDN -

. n:

0 11 13 14 17 16 17

clust #2: 9; # clusters left:
#clusters left: 10; cluster label matrix:

O N ~NNDDNDNNDND -

e e e e e
00 ~N O Ol WK = O

O 00 ~NNDNNNDND-

e e e e e
00 ~N O Ol WK = O

Corresponding nearest neighbors dissimilarities:

O 00 ~NO”NDNN

11
13
14
15
16
17
18

O 00 ~NONNNDNDE

e et i
W ~NO O W = O

© 00 ~NO®NDNDN

10
11
12 12
13 13
14 14
15 15
16 16
17 17
18 18

= © © 00 NOONNN

© 00NN NNDN-

O O 00 ~NONNMDNDDNF-
=
o

[y
[y

12 12
13 13
14 14
15 15
16 16
17 17
18 18
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© 00NN N

10
11
12
13
14
15
16
17
18

© 00 N NNN-

=
= O

12
13
14
15
16
17
18

O 00 ~NO 01w w

10

12
13
14
15
16
17
18

O 00 ~NO 0w wN =

A e
O ~NO O W= O

© 00 N O O W

10

12
13
14
15
16
17
18

O 00 ~NO O WN -

A e
O ~NO O W= O
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38.6264 38.6264 999.0000 999.0000 999.0000 999.0000
999.0000 999.0000 50.3903 999.0000 50.3903 53.0081
247.1801 831.7770

clust #1: 1; clust #2: 2; # clusters left: 10
#clusters left: 9; cluster label matrix:

0 0 0 0 0 0 0 0 1 1 1 1 1
0 0 0 0 0 0 0 0 1 2 2 2 2
0 0 0 0 0 0 0 0 1 2 2 2 2
0 0 0 0 0 0 0 0 1 2 2 2 2
0 0 0 0 0 0 0 0 1 2 2 2 2
0 0 0 0 0 0 0 0 1 2 2 2 6
0 0 0 0 0 0 0 0 7 7 7 7 7
0 0 0 0 0 0 0 0 7 7 7 8 8
0 0 0 0 0 0 0 0 7 7 9 9 9
0 0 0 0 0 0 0 0 7 7 9 9 9
0 0 0 0 0 0 0 0 11 11 11 11 11
0 0 0 0 0 0 0 0 11 11 11 11 11
0 0 0 0 0 0 0 0 13 13 13 13 13
0 0 0 0 0 0 0 0 14 14 14 14 14
0 0 0 0 0 0 0 0 15 15 15 15 15
0 0 0 0 0 0 0 0 16 16 16 16 16
0 0 0 0 0 0 0 o 17 17 17 17 17
0 0 0 0 0 0 0 0 18 18 18 18 18
Nearest neighbors of items 1, 2, ... n:

7T 0 0 0OOO 1 0 O 013 0 11 13 14 17 16 17

Corresponding nearest neighbors dissimilarities:

38.9808 999.0000 999.0000 999.0000 999.0000 999.0000
999.0000 999.0000 50.3903 999.0000 50.3903 53.0081
247.1801 831.7770

clust #1: 1; clust #2: 7; # clusters left: 9
#clusters left: 8; cluster label matrix:
0 0 0 0 0 0 1 1

=
N NN R R e e
N NNDNDDNNDNDNDe
O N ~NDNDDNNNDND-
O 00 ~NDNDNDDNNNDND-
O 00 ~NONNNDDNE

= e
W P
=
W = = N
=
W = = N
=
[CV I e ]
= e
W= =
= e
W= = O

O O O OO OO OO OO OO OO0
=
N
=
S
=
S
=
S
=
N
=
N

O OO OO OO O OO O O oo
O OO OO OO O OO O O oo
O OO OO OO O OO O O oo
O O O O O O OO OO O OO OO
O O O O O O OO OO O O O OO
O OO OO OO O OO O O oo

[
o
-
()]
-
()]
-
()]
[
o
[
o

38.9808 999.0000
141.7163 247.1801

1 1 1 1 1
2 2 2 2 2
2 2 2 3 3
2 2 2 3 4
2 2 5 b5 5
6 6 6 6 6
T 7T 17T 17T 7
8 8 8 8 8
9 9 9 9 9
9 10 10 10 10
11 11 11 11 11
12 12 12 12 12
13 13 13 13 13
14 14 14 14 14
15 15 15 15 15
16 16 16 16 16
17 17 17 17 17
18 18 18 18 18

38.9808 999.0000
141.7163 247.1801

=
W NP O OWOWWNONNNDDNDE
= e e
W NNFPE, O OWOONODNNNDDNDE
= e e
W NNFE O OWO0WNOOTNNDNE-
e
W NEFE O OWOOWNO”OTWwWwN-
e
W NP, O OWOO0WNOO P WwN -

=
o
=
o
=
o
=
o2 I
=
SIS
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o o0 o o o0 O o0 16 16 16 16 16 16 16 16 16 16 16
17 17 17 17 17 17 17 17 17 17 17
o o o0 O o o o0 18 18 18 18 18 18 18 18 18 18 18

o
o
o
o
o
o
o

Nearest neighbors of items 1, 2, ... n:
1. 0 0 0 0 0 0 0 O 013 O 11 13 14 17 16 17

Corresponding nearest neighbors dissimilarities:

50.6472 999.0000 999.0000 999.0000 999.0000 999.0000 999.0000 999.0000
999.0000 999.0000 50.3903 999.0000 50.3903 53.0081 141.7163 247.1801
247.1801 831.7770

clust #1: 1; clust #2: 11; # clusters left: 8
#clusters left: 7; cluster label matrix:

o 0 o o o0 o0 1 i1 1 1 1 1 i 1 1 1 1
o 0 o o o0 o0 1 i1 2 2 2 2 2 2 2 2 2
o 0 o o o0 o0 1 i1+ 2 2 2 2 2 2 2 3 3
o o o o o0 o 1 i1 2 2 2 2 2 2 2 3 4
o o o o o o 1 i 1 2 2 2 2 2 2 5 5 b
6o o o o o0 o 1 i 1 2 2 2 6 6 6 6 6 6
o 0 o o o0 o0 1 r 7 7T v rr 1 17T 17T 7T 7 7
o 0 o o o0 o0 1 i 7 7 7 8 8 8 8 8 8 8
o o o o o o 1 i 7 7 9 9 9 9 9 9 9 9
o o o o o0 o 1 i 7 7 9 9 9 9 10 10 10 10
o o o o0 o0 o0 1 11 11 11 11 11 11 11 11 11 11 11
o o o o o o0 1 11 11 11 11 11 11 12 12 12 12 12
o o o o o0 0 13 13 13 13 13 13 13 13 13 13 13 13
o o0 o o o0 O 14 14 14 14 14 14 14 14 14 14 14 14
6o 0 o O o0 o0 15 15 15 15 15 15 15 15 15 15 15 15
0o 0 O O O o0 16 16 16 16 16 16 16 16 16 16 16 16
o o o o o o 17 17 17 17 17 17 17 17 17 17 17 17
o o0 o o o0 o0 18 18 18 18 18 18 18 18 18 18 18 18
Nearest neighbors of items 1, 2, n:

13.0 0 60 0 0 0 0 0 O 0 0 113 14 17 16 17

Corresponding nearest neighbors dissimilarities:

50.3903 999.0000 999.0000 999.0000 999.0000 999.0000 999.0000 999.0000
999.0000 999.0000 999.0000 999.0000 50.3903 53.0081 141.7163 247.1801
247.1801 831.7770

clust #1: 1; clust #2: 13; # clusters left: 7
#clusters left: 6; cluster label matrix:
0 0 0 1 1 1 1

O O O O O O
O O O O O O
O O O O O O
O O O O O OO
OO O O O O O o
e
e
il el i S
b I i e i i
NN NNNN P
N NN DNNDND -
N NN DNNDND -
~NOoOONDNNN -
~NONNNNPE
~NONNNNP
N ONNN e
~NOoO O WwWwwN =
~N O O WN =
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o o o o o0 1t 11 2+ 7 T T 8 8 8 8 8 8 8
o o o o0 o0 1 1 1t 7 T 9 9 9 9 9 9 9 9
o o o o0 o0 1 1 1t 7T T 9 9 9 9 10 10 10 10
o o o o o0 1 1 11 11 11 11 11 11 11 11 11 11 11
o o o o o0 1 1 11 11 11 11 11 11 12 12 12 12 12
o o0 o o o0 1 13 13 13 13 13 13 13 13 13 13 13 13
0o 0 O O 0 14 14 14 14 14 14 14 14 14 14 14 14 14
0o 0 o O o0 15 15 15 15 15 15 15 15 15 15 156 15 15
0 0 O O O0 16 16 16 16 16 16 16 16 16 16 16 16 16
o o o o o 17 17 17 17 17 17 17 17 17 17 17 17 17
o o0 o o o0 18 18 18 18 18 18 18 18 18 18 18 18 18
Nearest neighbors of items 1, 2, n:

14 0 0 0 0 0 0 0O O O 0 0 0 114 17 16 17

Corresponding nearest neighbors dissimilarities:

53.0081 999.0000 999.0000 999.0000 999.0000 999.0000 999.0000 999.0000
999.0000 999.0000 999.0000 999.0000 999.0000 53.0081 141.7163 247.1801
247.1801 831.7770

clust #1: 1; clust #2: 14; # clusters left: 6
#clusters left: 5; cluster label matrix:

o o o o0 1 1 1 1 1 1 1 1 1 1 1 1 1 1
o o o o0 1t 1 1 1 1 2 2 2 2 2 2 2 2 2
o o o o0 1t 1 1 1 1 2 2 2 2 2 2 2 3 3
o o o o0 1t 1 1 1 1 2 2 2 2 2 2 2 3 4
o o0 o o0 1t 1 1 1 1 2 2 2 2 2 2 5 5 b
o o o o0 1t 1t 1 1 1 2 2 2 6 6 6 6 6 6
o o o o ¢ 1+ 21 1t 7 7 T T 7 7 7 7 7 7
o o o o 1+t 11 1 1 7 7T T 8 8 8 8 8 8 8
o o o o0 1+t 1+ 1 1 7 7 9 9 9 9 9 9 9 9
o o o o0 1+t 1+ 1 1t 7 7 9 9 9 9 10 10 10 10
o o0 o o0 1 1 1 11 11 11 11 11 11 11 11 11 11 11
o o o o0 1 1 1 11 11 11 11 11 11 12 12 12 12 12
o o o o0 1 1 13 13 13 13 13 13 13 13 13 13 13 13
0o 0 o0 O 1 14 14 14 14 14 14 14 14 14 14 14 14 14
6 o0 o0 O 15 15 15 15 15 15 15 15 16 15 15 15 156 15
6 0 0 O 16 16 16 16 16 16 16 16 16 16 16 16 16 16
o o o o 17 17 17 17 17 17 17 17 17 17 17 17 17 17
6 o0 o o0 18 18 18 18 18 18 18 18 18 18 18 18 18 18
Nearest neighbors of items 1, 2, n:

15 0 0 0 0 0 0 0 O O O O 0 0 117 16 17

Corresponding nearest neighbors dissimilarities:

141.7163 999.0000 999.0000 999.0000 999.0000 999.0000 999.0000 999.0000
999.0000 999.0000 999.0000 999.0000 999.0000 999.0000 141.7163 247.1801
247.1801 831.7770

clust #1: 1; clust #2: 15; # clusters left: 5
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#tclusters left: 4;

0

O OO O OO O OO0 O OO o OoOo

0

O OO O OO O OO OOOOOOoO OO0

0

O OO OO OO OO OOOOO O OO0

R R R R R R R R R R R R B R

= e
0 N O

cluster label matrix:

e e el e e T = T =

= e
0 N O O

1

el e = T = = R ==

R
0 ~N O O b

1

[ S S T e = T = = SN =

e e e
O N O O Ww

Nearest neighbors of items 1,

6 0 0 0 0 0 0 0 O O O O 0 0 017 16 17

1

i i e

el el i
0N O WP

2,

1

N NN R

N NNDNDDNDDNDNNN-

n:

O N ~NDNDNDDNDNDNDND -

e e e e e
00 ~NO O W = O

O 00 NN NNNDND-

e e e e e
00 ~NO O WK = O

Corresponding nearest neighbors dissimilarities:
254.8011 999.0000 999.0000 999.0000 999.0000 999.0000 999.0000 999.0000
999.0000 999.0000 999.0000 999.0000 999.0000 999.0000 999.0000 247.1801

247.1801 831.7770

clust #2:

#clusters left: 3; cluster label matrix:

clust #1: 1;
0 0 1 1
0 0 1 1
0 0 1 1
0 0 1 1
0 0 1 1
0 0 1 1
0 0 1 1
0 0 1 1
0 0 1 1
0 0 1 1
0 0 1 1
0 0 1 1
0 0 1 1
0 0 1 1
0 0 1 1
0 0 1 16
0 o 17 17
0 0 18 18

Nearest neighbors

1

T e e T e o el o = S S S

e
o N o O

of items 1,

1

I = o = T o = S S S S

e
0 N O O b

1

[ R O T T S e e e e

e e e
O N O O W

1

i i i

e el e
W ~NO O WR P

N

1

N ~NANE R

NN NNDNDNDDNDND -

16; # clusters left: 4

O N NN DNDDNDNDNND -

e e e e
W ~NO U W = O

O O ~NNNDNDNDND-

e e e e
W ~NO U W = O

O 00 ~NONNNDDNDF-

e e
W ~NO O W = O

O O ~NONNNDND-

e e e el
O ~NO U W= O

H © OO0 ~NOONNNDNE

H ©O© © 00 ~NOONNNDDNDE

O 00 ~NONNNNF-

=
= O

12
13
14
15
16
17
18

© 00 ~NONNNDN-

e e e e el
O ~NO O WP O
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© 00N U NNN-

e
= O

12
13
14
15
16
17
18

© 00 N ONNDN-

e e e
W ~NO Ol WN = O

O 00 ~NO 01w WwN -~

e
O ~NO Ok WN = O

O 0O ~NO” 0w wN =

e e e
W ~NO Ol WN = O

O 00 ~NO O WN -

e
O ~NO Ok WN = O

O o0 ~NO 0Lk WN -

e e e
W ~NO Ol WN = O
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i 0 0 0 0 0 0 0 0 0 00 0 0 O O 117

Corresponding nearest neighbors dissimilarities:

247.1801 999.0000 999.0000 999.0000 999.0000 999.0000 999.0000 999.0000
999.0000 999.0000 999.0000 999.0000 999.0000 999.0000 999.0000 999.0000
247.1801 831.7770

clust #1: 1; clust #2: 17; # clusters left: 3
#clusters left: 2; cluster label matrix:

0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
0 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2
0 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 3 3
0 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 3 4
0 1 1 1 1 1 1 1 1 2 2 2 2 2 2 5 b5 b
0 1 1 1 1 1 1 1 1 2 2 2 6 6 6 6 6 6
0 1 1 1 1 1 1 1 T T 7 7 1 7 7 7 7 7
0 1 1 1 1 1 1 1 T 7 T 8 8 8 8 8 8 8
0 1 1 1 1 1 1 1 T 7 9 9 9 9 9 9 9 9
0 1 1 1 1 1 1 1 T 7 9 9 9 9 10 10 10 10
0 1 1 1 1 1 i 11 11 11 11 11 11 11 11 11 11 11
0 1 1 1 1 1 1 11 11 11 11 11 11 12 12 12 12 12
0 1 1 1 1 1 13 13 13 13 13 13 13 13 13 13 13 13
0 1 1 1 1 14 14 14 14 14 14 14 14 14 14 14 14 14
0 1 1 1 15 15 15 16 15 15 16 15 15 15 15 15 15 15
0 1 1 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16
0 i1 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17
0 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18

Nearest neighbors of items 1, 2, n:
18 0 0 0 0 0 0 0 O O 0 0 0 0 0 0 0 1

Corresponding nearest neighbors dissimilarities:

831.7770 999.0000 999.0000 999.0000 999.0000 999.0000 999.0000 999.0000
999.0000 999.0000 999.0000 999.0000 999.0000 999.0000 999.0000 999.0000
999.0000 831.7770

clust #1: 1; clust #2: 18; # clusters left: 2
#tclusters left: 1; cluster label matrix:

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2
1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 3 3
1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 3 4
1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 5 b5 b
1 1 1 1 1 1 1 1 1 2 2 2 6 6 6 6 6 6
1 1 1 1 1 1 1 1 T 7 17 7 7 7 7 7 T 7T
1 1 1 1 1 1 1 1 T v T 8 8 8 8 8 8 8
1 1 1 1 1 1 1 1 T 7T 9 9 9 9 9 9 9 9
1 1 1 1 1 1 1 1 T 7T 9 9 9 9 10 10 10 10
1 1 1 1 1 1 i 111 11 11 11 11 11 11 11 11 11 11
1 1 1 1 1 1 1 11 11 11 11 11 11 12 12 12 12 12
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13
14
15
16
17
18

13
14
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17
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n:

13
14
15
16
17
18

13
14
15
16
17
18

Corresponding nearest neighbors dissimilarities:
999.0000 999.0000 999.0000 999.0000 999.0000 999.0000 999.0000 999.0000
999.0000 999.0000 999.0000 999.0000 999.0000 999.0000 999.0000 999.0000

999.0000 999.0000

13
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16
17
18
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17
18

13
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15
16
17
18
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Chapter 4

Discriminant Analysis

4.1 The Problem

Discriminant Analysis may be used for two objectives: either we want to assess
the adequacy of classification, given the group memberships of the objects under
study; or we wish to assign objects to one of a number of (known) groups of
objects. Discriminant Analysis may thus have a descriptive or a predictive
objective.

In both cases, some group assignments must be known before carrying out
the Discriminant Analysis. Such group assignments, or labelling, may be ar-
rived at in any way. Hence Discriminant Analysis can be employed as a useful
complement to Cluster Analysis (in order to judge the results of the latter) or
Principal Components Analysis. Alternatively, in star—galaxy separation, for
instance, using digitised images, the analyst may define group (stars, galaxies)
membership visually for a conveniently small training set or design set.

The basic ideas used in Discriminant Analysis are quite simple. For as-
sessment of a classification, we attempt to optimally locate a curve — often
a straight line — between the classes. For assignment, we basically look for
the class which is closest to the new object that we wish to classify. As with
other multivariate techniques, a variety of Discriminant Analysis methods are
available, based on the precise meaning to be given to such terms as “optimal”
and “closeness”.

A brief “appetizer” of the range of Discriminant Analysis techniques that
are widely used is as follows. It might be assumed for instance that the groups
to be distinguished are of Gaussian distribution; or a very flexible separation
surface might be used, such as would be entailed when assigning a new sample
to the cluster which the k closest neighbours of the new sample belonged to
(for some small constant k). Linear discrimination (or, in higher dimensional
spaces, hyperplane separation) is both mathematically tractable, and may fulfil
our objective of optimally separating classes. If the clusters are intertwined (see
Figure 4.1b), linear separation will perform badly; on the other hand in Figure
4.1a, there are only two points misclassified. Hyperplane separation performs
well when the classes are reasonably separated, and assumes no distributional
or other properties on the part of the data.

In the following, we will adopt two distinct frames of reference for the de-
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Figure 4.1: Two sets of two groups. Linear separation performs adequately in
(a) but non-linear separation is more appropriate in (b).

scription of discriminant methods. On the one hand, we will look at a geomet-
rical framework, which nicely complements the type of perspective employed in
PCA. On the other hand, we will overview discriminant methods which make
use of a probabilistic perspective. Interestingly, one well known method (Linear
Discriminant Analysis) may be specified using either mathematical framework.

The fact that Discriminant Analysis is often embraced under the term “clas-
sification” means that care should be taken in distinguishing between Cluster
and Discriminant Analyses. The former is unsupervised classification: no prior
knowledge of the group memberships is usually required. Discriminant Analysis,
when used for confirmatory or assessment purposes, is supervised classification
and has been referred to as “learning with a teacher”. Because of possible con-
fusion in what are usually quite distinct problems and ranges of methods, we
have generally eschewed the use of the term “classification”.

A good deal of this chapter gathers together summaries of the major lin-
ear (i.e. matrix) transformations applicable to statistical pattern recognition
— mostly — and estimation. One important objective touched on is to pro-
vide a foundation for research into the application of such techniques for (a)
automatic recognition of two-dimensional patterns (human face images, mor-
phologies of galaxies), and, (b) estimation from multidimensional signals, i.e. a
generalisation of multivariate regression.

4.2 Mathematical Description

4.2.1 Statistical Pattern Recognition

In pattern recognition studies, the term pattern is usually synonomous with “col-
lection of measurements or measured attributes”, i.e. a tuple or vector. Thus,
a general “pattern” or multidimensional “observed signal” may be represented
by a p-dimensional vector x. Pattern recognition is the study of the decision
mechanism: compute the class to which z belongs. A quite general solution
is to transform x to some scalar, y, so that the decision can be expressed as a

(&)
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threshold — or multiple thresholds for multiple classes. In the theory of statistcal
pattern recognition, the previous processes — transformation, followed by thresh-
olding — correspond to the general separation: feature extraction from the raw
input data, followed by classification based on the features. We are essentially
dealing with what has been termed discriminant analysis in this perspective.

In signal estimation we start with the same measurement vector, z, from
this we are required to estimate (derive) some unmeasurable quantity, y. Again,
linear transformation of = to the scalar attribute y is a general solution, as, for
example, in regression analysis.

Another fairly universal requirement in scientific data analysis, exploration,
visualisation, etc. is to map from p-dimensions to ¢ dimensions, where ¢ << p,
based on some optimality criterion, e.g. maximum information retention in the
reduced dimensionality space — — data compression, maximization of discrimi-
nation between classes — feature extraction, as mentioned above.

For each of the above problems, it is possible (at least theoretically) to obtain
solutions based on linear transformations of the form y = Az, where z isapx1
vector, y a g X 1 vector, and A, a ¢ X p matrix. Most of the transformations are
based on statistical criteria: least-square-error, maximum likelihood.

If the data are in image format, i.e. in the form of an N row XM column
image, F, the above form is not directly applicable. Nevertheless, such an
image easily can be vectorized — rearranged as a single NM x 1 vector — so the
transformations are still valid.

In the previous case, and where dimensionality of the input vectors is large,
the size of p ( = NM for an image) may make the matrix A difficult to handle,
and worse still, estimate. For example for a 512 x 512 image, F', p = NM =
262144, the correlation matrix of F' is 262144 x 262144 = (approx.) 69 x 109
elements. However, there are methods for transformations which operate on
greatly reduced subspaces of the input space.

Linear transformations are attractive because of their analytical tractability,
for example in most cases it is possible to obtain formulas linking statistics of
input vectors to those in the transformed space.

In the next section, each transformation is described according to its opti-
mization criterion and applicable problems; where it will help understanding of
the applicability of the transformation, some basic theory is given; implementa-
tion details such as mathematical formulas, algorithms or reference to specific
software is given. We then describe adaptations of vector transformations and
special treatment required for image patterns.

Appendix A contains a review of relevent results from linear algebra.

4.2.2 Linear Transformations: Introduction

Figure 4.2 summarizes a general statistical pattern recognition system.

The observation vector z is the input, the final output is the class or desision,
w; in general the input can come from one of ¢ classes, w;,t = 1,2,...c.

The feature extraction abstraction is an important one; the purpose of the
feature extractor is to produce (usually a minimal) set of measurements (a
feature vector) that allow (a) the classes to be distinguished, and, (b) remove, as
far as possible, noise and other defects introduced by the measurement system.

The purpose of the classifier is to identify, on the basis of the components of
an input feature vector (x), what class z belongs to. In a simple implementation,
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Observation | Feature | Feature | Classifier |Decision
——————————— >| Extraction [ === [-——————-
x (Vector) | | Vector y | [Vector w

Figure 4.2: Pattern recognition system.

this might involve computing the “similarity measure” between x and a number
of stored “perfect” vectors, and choosing the class with maximum similarity.

More formally, the feature vectors form a feature space. The job of the classi-
fier is to partition this space into (disjoint) regions, each region corresponding to
a class; normally, the classification task will be eased if there are as few features
as possible, and, they are chosen so as to best separate the classes.

There are two major categories of feature extraction: (a) feature selection —
based on possibly ad hoc information about the data, and (b) feature extraction
using linear tranformation. This chapter is primarily concerned with (b) —
input vector x is transformed to a feature vector y where the components of y
satisfy some optimality criteria, e.g. dimensionality reduction — with retention
of information, class separability.

The simplest possible transformation is given by:

y=a'z

i.e. z is transformed to a single scalar. Classification is then a simple matter of
thresholding. If, without loss of generality, we restrict to the two-class case:

T = classl
T = class2
T = class chosen arbitrarily

y

AV

4.2.3 Discriminants

The expressions just seen for y at the end of the previous section

form what is called a linear discriminant. A diagrammatic form is shown in
Figure 4.3.

The readers familiar with neural networks will notice the similarity between
this figure and a single neuron using a hard-limiting activation function.

A general discriminant function, g, is a function of the form:

y =g(z)

T = class1
T = class?2
T = class chosen arbitrarily

AV
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T
x0 |
\ |
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Fo—t——t | | | output 1 => class 1
x1 a2 | | y [ 0Ol [ 0 => class 2
———————————— + > >
| | [ T |
[+——+——+ S +
/
/ap-1 y = sum of y>T? output = 1 if y>T
/ ai.xi for i=1 = 0 otherwise
xp-1 to i=p
Figure 4.3: Linear discriminant,.
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Figure 4.4: Feature space, two-class, two dimensions.

Linear Discriminant as Projection

It is often useful to think geometrically about pattern recognition and signal
estimation problems. Feature vectors y reside in a p-dimensional feature space.
Figure 4.4 shows feature vectors (points, data) for a two-class, two-dimensional
feature space.

We can now examine the utility of a simple linear discriminant, i.e. y = a’z.

Projecting the data onto the yo axis corresponds to a discriminant vector
a = (ar,a2)" = (1.0,0.0)', i.e. yo is given a weight of 1.0, y; is given zero weight.
This projection would result in a little overlap of the classes (between points #1,
and ¢, — see Figure 4.4).

Projecting data onto axis y», discriminant vector = (0.0,1.0), would result
in much overlap. However, projecting the vectors onto the line shown in Figure
4.5 would be close to optimal — no class overlap.
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*

| 1 2 2 % 2

yi | 111 ¥2222
| 111111x 22222
| 11111x11 22222
| 11111 2 2
| 1x1 1 1 class w2
I * 1
| *
e >

* % * projection line

Figure 4.5: Linear discriminant as projection.

Projecting the data onto different axes is equivalent to rotating the axes,
i.e. in the case above, we would rotate to a new set of axes yg,y1, where yq
is the axis shown as * * *; obviously, in the case above, we would ignore the
second, ¥, dimension since it would contribute nothing to the discrimination of
the classes.

Fisher Linear Discriminant

The Fisher discriminant, defined for two-class problems, is one of the best known
of all pattern recognition algorithms. It projects the data onto a single axis,
defined by the Fisher discriminant vector a:

y=a'z

The Fisher discriminant simultaneously optimises two measures or criteria:

e maximum between-class separation, expressed as separation of the class
means mi, ms,

e minimum within-class scatter, expressed as the within class variances,
U1, V2

The Fisher criterion combines these two optimands as:

J = (m1 —m2)/(v1 + v2)

where the transformed means and variances are: m; = a'mj,v; = aS;a’,S; =
covariance for class j, m; = mean vector for class j.
The discriminant is computed using:

a=W(my —msy)

where W is the pooled (overall, class-independent) covariance matrix, W =
P, S; + P»Ss. Py, P, are the prior probabilities (see Appendix A).



4.2. MATHEMATICAL DESCRIPTION 117

Procedure

1. Estimate class means m; and covariance matrices S;, and prior probabil-
ities, P;.

2. Compute pooled covariance matrix, W (see equation above).
3. Invert matrix W (using some standard matrix inversion subprogram).
4. Compute the discriminant vector, a (see equation above).

5. Apply the discriminant using equation y = a'z.

4.2.4 Karhunen-Loéve Transform

Also called Principal Components Analysis, Factor Analysis, Hotelling Trans-
form (see Chapter 2 for a different perspective on the same method).

The Karhunen-Loéve (KL) transform rotates the axes such that the covari-
ance matrix is diagonalized:

y=Uzx

where, see Appendix A, U is the eigenvector matrix of S the covariance matrix
(over all classes), i.e.

U'SU =1L
where
A0 0 0
0 X O 0

L is a diagonal matrix containing the variances in the transformed space,
and
Uy
U2

U=

Uj

Up

is the matrix formed by the eigenvectors, u;, of S.

There is an eigenvector, u;, corresponding to each eigenvalue A;. If we order
the eigenvectors, u;, according to decreasing size of the corresponding eigen-
value, we arrive at a transform in which the variance in dimension yq is largest,
y1, the next largest, etc.

If we equate variance to information, then the KL transform gives a method
of mapping to a lower dimensionality space, m, say, m < p,

with maximum retention of information; thus its theoretical appeal for data
compression. Let U be the m X p matrix containing the first m rows of U,
i.e. the m eigenvectors (projections) corresponding to the m largest eigenvalues.
We can rewrite equation y = Uz as
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Figure 4.6: KL transform.

y2 = Usx

which corresponds to the coding part of the compression. We have reduced the
data from p to m numbers. We can decode using,

ro = UéyQ

Now, z2 will be a maximally faithful (in a least square error sense) recreation
of the original vector x, i.e. it minimizes the expected square error between
the original vector, and the decoded vector; the minimum square error (MSE)
criterion is expressed as:

J=E{(z — 1) (x — z2)}

Figure 4.6 gives a geometrical representation of a KL transform. We are
given a cluster of data approximately elliptically shaped, with the major axis of
the ellipse subtending an angle of about 45 degrees to the horizontal axis. The
minor axis is perpendicular to that. The line denoted with the asterisks corre-
sponds to the first eigenvector, i.e. the eigenvector corresponding to maximum
variance.

Frequently the eigenvector/eigenvalue equation is expressed as:

Rur = Apug

where, as above, A\ is the kth eigenvalue, and wuy is the associated kth eigen-
vector.

Procedure

1. Estimate the overall covariance matrix S.

2. Compute the set of eigenvalues, A, and the set of eigenvectors, U, of S,
using some standard subprogram.

3. Order the rows of U according to the corresponding eigenvalues, see above.
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Figure 4.7: Multiclass least square error linear discriminant,.

4. Apply the transform using equation y = Uz. The components of y are
ordered according to “information” content. Thus we can retain the first,
m, say, of them as the most “significant” features.

The KL transform U is computed without any reference to class occupancy,
— the class labels are ignored when S is computed. Therefore, is contrast with,
for example, the Fisher discriminant, KL has no particular discriminating ca-
pability.

4.2.5 Least Square Error Linear Discriminant
The Fisher discriminant works only for two classes although it is possible to
tackle multi-class problems using pairwise discriminants for each of the ( ; >

dichotomies, and furthermore we will discuss the fully multiclass Fisher discrim-
inant later in this chapter. Multiple or canonical discriminant analysis are terms
which are also used for the multiple class case.

An alternative (but actually similar to the Fisher discriminant) approach
is to express the pattern recognition problem as in Figure 4.7, which shows a
mapping from the p x 1 observation vector = directly to a ¢ x 1 class vector, y.

The class vector is a binary vector, with only one bit set at any time, in
which a bit j set ( = 1) denotes class j; i.e.

y = (1,0,0,...0)" denotes class 0
y = (0,1,0,...0) denotes class 1

etc.

The problem can be set up as one of multiple linear regression, in which the
independent variables are the components of x, and the dependent variables —
the ¢ class “bits” — are the components of y.

For, initially, just one component of y, y;, the regression problem can be
expressed compactly as:

Yji = b +e

where b = (bo,b1,...,bp—1)" is a p x 1 vector of coefficients for class j, z; =
(1,z41,...Tip—1)" is the pattern vector, and e; = error, y;; = 1 if the pattern z
belongs to class 7, = 0 otherwise.
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Formulation in terms of the augmented vector x, which contains the bias
element 1 is important; without it we would effectively be fitting a straight
line through the origin — the bias (bp) corresponds to a non-zero intercept of
the y-axis; compared to using a separate bias element, the analysis is greatly
simplified.

The complete set of n observation equations can be expressed as:

y=Xb+e

where e = (e1,e3,...€;,...€,)", and y = (y1,Y2,.--Yi,..-Yn)', the n x 1 vector
of observations of the class variable (bit). X is the n x p matrix formed by n
rows of p pattern components.

The least square error fitting is given by:

Least square error fitting equation: b’ = (X'X)™' X'y

Note: the jkth element of the p x p matrix X'X is >, xj;x, and the jth row
of the p x 1 vector X'y is >, z;;y;- Thus, X'X differs from the autocorrelation
matrix of z only by a multiplicative factor, n, so that the major requirement
for the least square error fitting equation above to provide a valid result is that
the autocorrelation matrix of x is non-singular.

We can express the complete problem, where the vector y has ¢ components
by replacing the vector y in the least square error fitting equation with the
matrix Y, the n X ¢ matrix formed by n rows of ¢ observations.

Thus, the least square error fitting equation extends to the complete least
square error linear discriminant:

B' = (X'X)"'X'y

X'Y is now a p X ¢ matrix, and B’ is a p X ¢ matrix of parameters, i.e. one
column of p parameters for each dependent variable.

Applying the discriminant/transformation is simply a matter of premulti-
plying the (augmented) vector z by B':

y =Bz

4.2.6 Special Cases for Image Patterns

The transforms given in the previous sections are, in general, directly applicable
to image patterns. By an “image” pattern we mean that the components of the
pattern are derived from the pixels of a two-dimensional image. Let f be an
image pattern, where the general pixel at row r, and column ¢ is f[r,c] — or fy;
there are N rows, r =0...N —1 and M columns, c=0...M — 1.

fo() f01 fO,M—l
= fio fi1 fl,Mfl
fn—10 -1 o o o fNo1M—t

Trivially, f can be represented as an NM x 1 vector as follows:

x = (foo, for,- - fomr—1, f10. .. fre o fN—10- - FN—1,M—1)
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Usually, the major problem with extending our results to images is in the
difficulty of estimating statistics. For example, if the images f are N x M, the
vectors x are NM x 1; therefore the autocorrelation and covariance matrices
for z (and f) are NM x NM. If the images are modestly sized at 128 x 128
(N =128, M = 128) we have an autocorrelation matrix of 16384 x 16384 values.
Such a matrix is simply not estimatible, nor handleable.

Eigenimages

The treatment of the Karhunen-Loéve transform (eigenvector expansion) above
uses the autocorrelation matrix R as the basis of the eigenvectors. Frequently,
the covariance matrix S is used instead. In this section on eigenfaces (or eigen-
galaxies etc.), we will use the covariance matrix. Daubos (1997) studied eigen-
galaxies in the same way.

Naively, the Karhunen-Loeve transform ( y = Uz ) can be easily extended
to apply to image patterns, by expressing the sample images as vectors. How-
ever, the problem mentioned in the previous section, of a huge dimensionality
covariance matrix, is immediately obvious; the dimensionality of = is p = NM;
assume for the remainder that NV = M, i.e. we have a square image.

If we express the image patterns f; as vectors z; using the vectorization
approach above, let there be n of them in the sample, x;,7 =1...n.

If we center our data, i.e., ' = z — m (the pattern vector is reduced to
zero mean — note that the prime here indicates just another variable and not

!

transpose), , and define the matrix X as X = [z{z} ...z} ... z]], a p X n matrix

where p = N?, the sample covariance matrix can be expressed as

1
S=-XX'
n

which is N2 x N2. However, see Appendix A, the rank of S is only n, and
therefore there are only n non-zero eigenvalues when S is diagonalized. Based
on this we have a method of finding these n eigenvalues/eigenvectors based on
a reduced dimensionality n X n matrix, as we will now show.

If we express the eigenvalue/eigenvector equation as Ry, = A\puy (see above),
then for the n x n matrix T = X'X,

Tor, = Apvg

i.e.
X’XUk = /\k'Uk
where, as before, A\ is the kth eigenvalue, and vy is the associated kth eigen-

vector; note that the vy are n x 1 vectors.
Premultiply each side by X,

XXIX’LLk = /\kXUk

Now this too is an eigenvalue/eigenvector equation for the matrix X X’ which
=nS. Therefore the p x 1 vectors Xvy, = uy are the eigenvectors of nS.
Note the dimensionalities: ug is p x 1, Xvg is (p X n) x (n x 1).
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To clarify what is happening we can show the above expression fully ex-
panded:

Uok To1 Zo2 Toq Zon Vg1
Uik _ T11 T12 T14 Tin Vg2
Up—1,k Tp—11 Tp—1,2 - Tp-14 -+ Tp—_1n Ukn

i.e., the kth eigenvector of S (an eigenimage) is formed by a linear combination
of all the n training images; the coefficient/weight for image i being the ith
component of vy.

Procedure

Assume we have n training images f;,7 = 1 X n, and they are of size N x N; in
fact, it is more convenient to deal with vectors z; and =} = z; — m where m is
the average over the n training vectors (i.e. here, images).

1. Compute the average image m:

n
1
m = — E T
n <
i=1

2. Form the n x n matrix T ( = X'X ) where the reth component of T,
Ty. = x)x., the dot product of the rth and cth training vectors/images.

3. Find the n eigenvectors of T', vy.
4. Order the v, according to decreasing eigenvalue.

5. Use the equation u = Xwvp to compute the n' ( < n) most significant

eigenimages, ug, k =1...n'.

Conclusion on Special Cases

The eigenimage can be effectively used to characterize basic components in
our image data. Examples of its use include eigenfaces (i.e. eigenimages of
faces), for the purposes of simplifying human face recognition. Eigenimages
may be a useful dataset to store on a memory chip on a surveillance card (credit
card, access card), with the relatively less information-rich discrepancy between
it and any individual’s face being stored in addition. Another example is to
define eigengalaxies, to address the problem of sorting and organizing images of
different galaxy morphologies.

4.2.7 Multiple Discriminant Analysis

Multiple Discriminant Analysis (MDA) is also termed Discriminant Factor
Analysis and Canonical Discriminant Analysis. It adopts a similar perspective
to PCA: the rows of the data matrix to be examined constitute points in a mul-
tidimensional space, as also do the group mean vectors. Discriminating axes are



4.2. MATHEMATICAL DESCRIPTION 123

determined in this space, in such a way that optimal separation of the prede-
fined groups is attained. As with PCA, the problem becomes mathematically
the eigenreduction of a real, symmetric matrix.

Consider the set of objects, i € I; they are characterised by a finite set of
parameters, 7 € J. The vectors associated with the objects are given as the row
vectors of the matrix X = {z;;}. The grand mean of all vectors is given by

:%Z%

iel

(where n is the cardinality of I). Let y; be the jt* coordinate of the mean of
group y; i.e.
Z 73y

(where n,, is the cardinality of group y). Finally, we consider the case of mutually
disjoint groups, y, whose union gives I. Let Y be the set of these groups, and
let ny be the number of groups considered. Evidently, ny < n.

We now define the following three variance—covariance matrices. T' (of jk"*
term, ¢;;) is the total covariance matrix; W is the within classes covariance
matrix; and B is the between classes covariance matrix:

T : tjr = =i (@i — 95) (@i — gr)
W w]k EyEY EzEy(xl] y])(xlk - Z/k)
B bk =2, ey 2y — 95) Yk — gk)-

The three matrices, T, W and B, are of dimensions m x m where m is the
number of attributes (i.e. the vectors considered, their grand mean, and the
group means are located in IR™).

Generalizing Huyghen’s Theorem in classical mechanics, we have that T' =
W + B. This is proved as follows. We have, for the (j, k)" terms of these

matrices:
- E 1’” mzk - gk)
lEI

:_szzg_ xzk_yk +Z yk_gk)
yeY i€y er

Rewriting the first term on the right hand side of the equation as

S S g 9) — (g — )G — 98— e — )

yeY icy

and expanding gives the required result.

The sum of squared projections of the points in R"™ along any given axis u is
given by u'Tu (cf. the analogous situation in Principal Components Analysis).
For the class means along this axis we have u'Bu. Finally, for the within class
deviations along this axis, we have u'Wu. Since T = W + B, we have that

u'Tu=uBu+uWu.
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The optimal discrimination of the given groups is carried out as follows.
We choose axis u to maximize the spread of class means, while restraining the
compactness of the classes, i.e.

u’Bu
uWu’

This maximization problem is the same as

max

. u'Wu . uWu ‘1 . uWu+u'Bu
min = min—— =min————
u’'Bu u’'Bu u’'Bu

. u'Tu u'Bu
= min——— = max .
u’'Bu u'Tu

As in PCA (refer to Chapter 2), we use A as a Lagrangian multiplier, and
differentiate the expression u’ Bu — A(u'Tu) with respect to u. This yields u as
the eigenvector of T~! B associated with the largest eigenvalue, \. Eigenvectors
associated with successively large eigenvalues define discriminating factors or
axes which are orthogonal to those previously obtained. We may therefore say
that MDA is the PCA of a set of centred vectors (the group means) in the
T~ '-metric.

A difficulty has not been mentioned in the foregoing: the matrix product,
T~'B is not necessarily symmetric, and so presents a problem for diagonal-
ization. This difficulty is circumvented as follows. We have that Bu = AT'u.
Writing B as the product of its square roots CC" (which we can always do be-
cause of the fact that B is necessarily positive definite and symmetric) gives:
CC'u = AT'u. Next, define a new vector a as follows: u = T !Ca. This gives:

CC'T'Ca=\TT"'Ca

= C(C'T'C)a=\Ca

= (C'T'C)a = \a.

We now have an eigenvalue equation, which has a matrix which is necessarily
real and symmetric. This is solved for a, and substituted back to yield u.
Since the largest eigenvalue is

uBu uTu—uWu

u'Tu u'Tu

)

it is seen that the right side here, and hence all eigenvalues, are necessarily
positive and less than 1.

The eigenvalues represent the discriminating power of the associated eigen-
vectors. Unlike in PCA, the percentage variance explained by a factor has no
sense in MDA, since the sum of eigenvalues has no meaning.

The ny classes lie in a space of dimension at most ny — 1. This will be the
number of discriminant axes or factors obtainable in the most common practical
case when n > m > ny.
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Linear of Fisher Discriminant Analysis

In this section, we will examine the 2-group case of MDA, and focus on the
assignment problem. Discriminant Analysis may be used for assigning a new
object, as well as for confirming the separation between given groups. The
distance, in this new T~'-metric, between some new vector a and the barycentre
(or centre of gravity) y of class y is defined by the Mahalanobis or generalized
distance:

d(a,y) = (a—-y)'T™ (a~y).

Vector a is assigned to the class y such that d(a,y) is minimal over all groups.
In the two-group case, we have that a is assigned to group y; if

d(a,y1) < d(a,ys2).

Equality in the above may be resolved in accordance with user choice. Writ-
ing out explicitly the Euclidean distances associated with the matrix 7!, and
following some simplifications, we find that vector a is assigned to group y; if

_ 1 _
(yi—y2)T 'a> 5(}’1 —y2)' T (y1 +y2)

and to group y» if

1
(yi1 —y2)'T ta< 5(}’1 —y2)T Hy1 +y2).

The left hand side is the T~ !-projection of a onto y; — y» (i.e. the vector
connecting y» to y1; and the right hand side is the T ~!-projection of (y; +y2)/2
onto y; —y2 (see Figure 4.8). This concords well with an intuitive idea of the
objective in assignment: a new sample is assigned to a group if it lies closer to
it than does the mid-way point between the two groups.

This allocation rule may be rewritten as

_ +

(y1 —y2)'T 1(a—¥)>0:>a—>y1
_ +

(y1 —y2)'T 1(a—%) < 0= a—ys.

The left hand side here is known as Fisher’s linear discriminant function.

4.2.8 Bayesian Discrimination: Quadratic Case

The assignment aspect of discrimination is at issue in this section. As a
general rule, it is clearly best if we attempt to take as much information as
possible about the problem into account. Let us look at how successively more
problem-related characteristics can be considered, but simultaneously we will
have to pinpoint difficulties in the implementation of our successive solutions.
Overcoming these difficulties will lead to other approaches for the assignment
problem, as will be seen.

Consider a vector of measured parameters, x, relating to attributes of galax-
ies. Next consider that a sample of galaxies which is being studied consists of
75% spirals and 25% ellipticals. That is
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(yisy2)/2

¥2

Figure 4.8: The assignment of a new sample a to one of two groups of centres
y1 and ys.

P(spiral) = 0.75,
P(elliptical) = 0.25.

where P(.) denotes probability. In the absence of any other information, we
would therefore assign any unknown galaxy to the class of spirals. In the long
run, we would be correct in 75% of cases, but we have obviously derived a very
crude assignment rule.

Consider now that we are given also the conditional probabilities: for a
particular set of parameter values, xq, we have

P(spiral | x9) = 0.3
P(elliptical | xg) = 0.7.

In this case, we are led to choose the class of ellipticals for our unknown
galaxy, for which we have measured the parameter values xg. The conditional
probabilities used above are referred to as prior or a priori probabilities.

This leads to Bayes’ rule for the assignment of an unknown object to group
c rather than to any other group, y:

P(c|xo) > P(y | x0) forally#ec. (4.1)

Tied optimal assignment values may be arbitrarily resolved.

A difficulty arises with Bayes’ rule as defined above: although we could at-
tempt to determine P(c | x) for all possible values of x (or, perhaps, for a
discrete set of such values), this is cumbersome. In fact, it is usually simpler to
derive values for P(xg | ¢), i.e. the probability of having a given set of measure-
ments, Xg, given that we are dealing with a given class, ¢. Such probabilities
are referred to as posterior or a posteriori probabilities. Bayes’ theorem relates
priors and posteriors. We have:

P(xo | ¢)P(c)

Plel=0) = s = Bl 19 PG) (4.2)




4.2. MATHEMATICAL DESCRIPTION 127

All terms on the right hand side can be sampled: P(c) is determined straight-
forwardly; P(x¢ | ¢) may be sampled by looking at each parameter in turn
among the vector xg, and deriving estimates for the members of class c.

Substituting equation (4.2) into both sides of equation (4.1), and cancelling
the common denominator, gives an assignment rule of the following form: choose
class c over all classes y, if

P(xo | ¢) P(c) > P(xo | y) P(y) forally#c. (4.3)

This form of Bayes’ rule is better than the previous one. But again a difficulty
arises: a great deal of sampling is required to estimate the terms of expression
(4.3). Hence it is convenient to make distributional assumptions about the data.
As always the Gaussian or normal distribution (for historical rectitude, known in
the French literature as the distribution of Gauss—Laplace) figures prominently.

The multivariate normal density function (defining a multidimensional bell-
shaped curve) is taken to better represent the distribution of x than the single
point as heretofore. This is defined as

1

(2r) [V E eap (3 (x— &)V (x )

where V' is the variance—covariance matrix. It is of dimensions m x m, if m is the
dimensionality of the space. If equal to the identity matrix, it would indicate
that x is distributed in a perfectly symmetric fashion with no privileged direction
of elongation. | V' | is the determinant of the matrix V.

Assuming that each group, ¢, is a Gaussian, we have

Pe]e) = (2m)7F |V, |75 eap (—50x - 80V O~ g0)

c

where g, is the centre of class ¢, and V, is its variance—covariance matrix.

Substituting this into equation (4.3), taking natural logs of both sides of
the inequality, and cancelling common terms on both sides, gives the following
assignment rule: assign x to class c if

In| Ve |+(x—g)V.t(x—ge) —In P(c)
<In|Vy|+(x-— gy)'Vyfl(x —gy) —In P(y) forally#c.
This expression is simplified by defining a “discriminant score” as
6c(x) =lin | VC | +(X - gc)lvcil(x - gc)
The assignment rule then becomes: assign x to class c if

de(x) —In P(c) < d0y(x) —In P(y) for all y #c.

The dividing curve between any two classes immediately follows from this.
It is defined by

do(x) —In P(c) = 6y(x) —In P(y) forally#c

The shape of a curve defined by this equation is quadratic. Hence this general
form of Bayesian discrimination is also referred to as quadratic discrimination.
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4.2.9 Maximum Likelihood Discrimination

In a practical context we must estimate the mean vectors (g,) and the variance-
covariance matrices (V) from the data which may be taken to constitute a
sample from an underlying population. These are termed plug in estimators,
since they are sample estimates of the unknown parameters.

We have used a multivariate normal density function for P(x | y). If all n
objects x; have been independently sampled, then their joint distribution is

£=T7, P(xi | y).

Considering £ as a function of the unknown parameters g and V, it is termed
a likelihood function. The principle of maximum likelihood then states that we
should choose the unknown parameters such that £ is maximized. The classical
approach for optimizing L is to differentiate it with respect to g and then with
respect to V, and to set the results equal to zero. Doing this for the multivariate
normal expression used previously allows us to derive estimates for the mean
and covariances as follows.

1 n
Ta g

These are used to provide maximum likelihood estimates for the Bayesian
classifier.

In a more general setting, we could wish to consider a multivariate normal
mixture of the following form:

P(x|y) = Zwkka|gkyvk)

where k£ ranges over the set of mixture members, w is a weighting factor, and
the function f depends on the mean and the covariance structure of the mix-
ture members. For such density functions, an iterative rather than an analytic
approach is used, although boundedness and other convergence properties are
problemsome (see Hand, 1981).

4.2.10 Bayesian Equal Covariances Case

The groups we study will not ordinarily have the same covariance structure.
However it may be possible to assume that this is the case, and here we study
what this implies in Bayesian discrimination.

The discriminant score, defined in section 4.2.3, when expanded is

Oe(x) =In | Ve | +x'V'x — gtV x = x'V g + gLV, g

The first two terms on the right hand side can be ignored since they will
feature on both sides of the assignment rule (by virtue of our assumption of
equal covariances); and the third and fourth terms are equal. If we write

de(x) =28V, 'x — gV, g,
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then the assignment rule is: assign x to class c if

¢e(x) +In P(c) > ¢y(x) +In P(y) forally #ec.

However, ¢ can be further simplified. Its second term is a constant for a given
group, ap; and its first term can be regarded as a vector of constant coefficients
(for a given group), a. Hence ¢ may be written as

m
d)C(X) = Q¢ + Zacjwj.
j=1

Assuming P(c) = P(y), for all y, the assignment rule in the case of equal
covariances thus involves a linear decision surface. We have a result which is
particularly pleasing from the mathematical point of view: Bayesian discrim-
ination in the equal covariances case, when the group cardinalities are equal,
gives exactly the same decision rule (i.e. a linear decision surface) as linear
discriminant analysis discussed from a geometric standpoint.

4.2.11 Non—Parametric Discrimination

Non-parametric (distribution—{ree) methods dispense with the need for assump-
tions regarding the probability density function. They have become very popular
especially in the image processing area.

Given a vector of parameter values, xg, the probability that any unknown
point will fall in a local neighbourhood of xy may be defined in terms of the
relative volume of this neighbourhood. If n’ points fall in this region, out of
a set of n points in total, and if v is the volume taken up by the region, then
the probability that any unknown point falls in the local neighbourhood of xq
is n'/nv. An approach to classification arising out of this is as follows.

In the k-NN (k nearest neighbours) approach, we specify that the volume is
to be defined by the k& NNs of the unclassified point. Consider n. of these & NNs
to be members of class ¢, and n, to be members of class y (with n. +n, = k).
The conditional probabilities of membership in classes ¢ and y are then

Ne

P = —

(xo | ) = 2
n

P =4,
(%0 | y) o

Hence the decision rule is: assign to group c if
ne _ n
e Ty
nv - no

L.e. T > MNy.

The determining of NNs of course requires the definition of distance: the
Euclidean distance is usually used.

An interesting theoretical property of the NN-rule relates it to the Bayesian
misclassification rate. The latter is defined as

1 —maz, P(y | xo)

or, using notation introduced previously,
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1 — P(c | xo). (4.4)

This is the probability that x¢ will be misclassified, given that it should be
classified into group c.

In the 1-NN approach, the misclassification rate is the product of: the con-
ditional probability of class y given the measurement vector x, and one minus
the conditional probability of class y given the NN of x as the measurement
vector:

Y Ply|x)(1-Ply| NN(x)). (4.5)

all y

This is the probability that we assign to class y given that the NN is not
in this class. It may be shown that the misclassification rate in the 1-NN
approach (expression 4.5) is not larger than twice the Bayesian misclassification
rate (expression 4.4). Hand (1981) may be referred to for the proof.

4.3 Examples and Bibliography

4.3.1 Practical Remarks

We can evaluate error rates by means of a training sample (to construct the
discrimination surface) and a test sample. An optimistic error rate is obtained
by reclassifying the design set: this is known as the apparent error rate. If an
independent test sample is used for classifying, we arrive at the true error rate.

The leaving one out method attempts to use as much of the data as possible:
for every subset of n —1 objects from the given n objects, a classifier is designed,
and the object omitted is assigned. This leads to the overhead of n discriminant
analyses, and to n tests from which an error rate can be derived. Another
approach to appraising the results of a discriminant analysis is to determine
a confusion matrix which is a contingency table (a table of frequencies of co—
occurrence) crossing the known groups with the obtained groups.

We may improve our discrimination by implementing a reject option: if for
instance we find P(x | ¢) > P(x | y) for all groups y # ¢, we may additionally
require that P(x | ¢) be greater than some threshold for assignment of x to c.
Such an approach will of course help to improve the error rate.

There is no best discrimination method. A few remarks concerning the
advantages and disadvantages of the methods studied are as follows.

e Analytical simplicity or computational reasons may lead to initial consid-
eration of linear discriminant analysis or the NN—rule.

e Linear discrimination is the most widely used in practice. Often the 2-
group method is used repeatedly for the analysis of pairs of multigroup
data (yielding k(k — 1)/2 decision surfaces for k groups).

e To estimate the parameters required in quadratic discrimination requires
more computation and data than in the case of linear discrimination. If
there is not a great difference in the group covariance matrices, then the
latter will perform as well as quadratic discrimination.
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e The k-NN rule is simply defined and implemented, especially if there is
insufficient data to adequately define sample means and covariance matri-
ces.

e MDA is most appropriately used for feature selection. As in the case of
PCA, we may want to focus on the variables used in order to investigate the
differences between groups; to create synthetic variables which improve the
grouping ability of the data; to arrive at a similar objective by discarding
irrelevant variables; or to determine the most parsimonious variables for
graphical representational purposes.

4.3.2 Examples from Astronomy

1. H-M. Adorf, “Classification of low—resolution stellar spectra via tem-
plate matching — a simulation study”, Data Analysis and Astronomy,
(Proceedings of International Workshop on Data Analysis and Astron-
omy, Erice, Italy, April 1986) Plenum Press, New York, 1986 (in press).

2. E. Antonello and G. Raffaelli, “An application of discriminant analysis to
variable and nonvariable stars”, Publications of the Astronomical Society
of the Pacific, 95, 82-85, 1983.

(Multiple Discriminant Analysis is used.)

3. T. Daubos, “Représentation paramétrique d’images d’objets individuels”,
Rapport de stage de DEA, Strasbourg Observatory, 54 pp., 1997.

(A study of galaxy morphologies, using eigengalaxies.)

4. M. Fracassini, L.E. Pasinetti and G. Raffaelli, “Discriminant analysis on
pulsar groups in the diagram P versus P”, in Proceedings of a Course
and Workshop on Plasma Astrophysics, European Space Agency Special
Publication 207, 315-317, 1984.

5. M. Fracassini, P. Maggi, L.E. Pasinetti and G. Raffaelli, “Pair of pulsars
in the diagram P versus P”, Proceedings of the Joint Varenna—Abastumani
International School and Workshop on Plasma Astrophysics, Sukhami,
European Space Agency Special Publication 251, 441-445, 1986.

6. A. Heck, “An application of multivariate statistical analysis to a photo-
metric catalogue”, Astronomy and Astrophysics, 47, 129-135, 1976.
(Multiple Discriminant Analysis and a stepwise procedure are applied.)

7. J.F. Jarvis and J.A. Tyson, “FOCAS — Faint object classification and

analysis system”, SPIE Instrumentation in Astronomy III, 172, 422-428,
1979.

(See also other references of Tyson/Jarvis and Jarvis/Tyson.)
8. J.F. Jarvis and J.A. Tyson, “Performance verification of an automated

image cataloging system”, SPIE Applications of Digital Image Processing
to Astronomy, 264, 222-229, 1980.
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9.

10.

11.

12.

13.

14.

15.

16.

17.
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J.F. Jarvis and J.A. Tyson, “FOCAS — Faint object classification and
analysis system”, The Astronomical Journal, 86, 1981, 476-495.

(A hyperplane separation surface is determined in a space defined by 6
parameters used to characterise the objects. This is a 2-stage procedure
where the first stage is that of training, and the second stage uses a par-
titioning clustering method.)

M.J. Kurtz, “Progress in automation techniques for MK classification”,
in ed. R.F. Garrison, The MK Process and Stellar Classification, David
Dunlap Observatory, University of Toronto, 1984, pp. 136-152.

(Essentially a k-NN approach is used for assigning spectra to known stellar
spectral classes.)

H.T. MacGillivray, R. Martin, N.M. Pratt, V.C. Reddish, H. Seddon,
L.W.G. Alexander, G.S. Walker, P.R. Williams, “A method for the
automatic separation of the images of galaxies and stars from measure-
ments made with the COSMOS machine”, Monthly Notices of the Royal

Astronomical Society, 176, 265-274, 1976.

(Different parameters are appraised for star/galaxy separation. Kurtz —
see reference in Chapter 3 (Cluster Analysis) — lists other parameters
which have been used for the same objective.)

M.L. Malagnini, “A classification algorithm for star—galaxy counts”, in
Statistical Methods in Astronomy, European Space Agency Special Pub-
lication 201, 1983, pp. 69-72.

(A linear classifier is used and is further employed in the following refer-
ence.)

M.L. Malagnini, F. Pasian, M. Pucillo and P. Santin, “FODS: a system
for faint object detection and classification in astronomy”, Astronomy and
Astrophysics, 144, 1985, 49-56.

“Recommendations for Guide Star Selection System”, GSSS Group doc-
umentation, Space Telescope Science Institute, Baltimore, 1984.

(A Bayesian approach, using the IMSL subroutine library — see below —
is employed in the GSSS system.)

W.J. Sebok, “Optimal classification of images into stars or galaxies — a
Bayesian approach”, The Astronomical Journal, 84, 1979, 1526-1536.
(The design of a classifier, using galaxy models, is studied in depth and

validated on Schmidt plate data.)

J.A. Tyson and J.F. Jarvis, “Evolution of galaxies: automated faint object
counts to 24th magnitude”, The Astrophyiscal Journal, 230, 1979, L.153—
L156.

(A continuation of the work of Jarvis and Tyson, 1979, above.)

F. Valdes, “Resolution classifier”, SPIE Instrumentation in Astronomy IV,
331, 1982, 465-471.
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(A Bayesian classifier is used, which differs from that used by Sebok,
referenced above. The choice is thoroughly justified. A comparison is also
made with the hyperplane fitting method used in the FOCAS system —
see the references of Jarvis and Tyson. It is concluded that the results
obtained within the model chosen are better than a hyperplane based
approach in parameter space; but that the latter is computationally more
efficient.)

4.3.3 General References

In the following, some software packages are included. The accompanying doc-
umentation often constitutes a quick and convenient way to get information on
analysis methods.

1.

10.

S. Aeberhard, D. Coomans, and O. de Vel. Comparative Analysis of
Statistical Pattern Recognition Methods in High Dimensional Settings.
Pattern Recognition, Vol. 27, No. 8, 1994.

A K. Agrawala (ed.). Machine Recognition of Patterns. IEEE Press. (Col-
lection of key papers and a tutorial), 1974.

J.V. Beck, and K.J. Arnold. Parameter Estimation in Engineering and
Science. John Wiley and Sons, 1977.

. S—T. Bow, Pattern Recognition, Marcel Dekker, New York, 1984.

(A textbook detailing a range of Discriminant Analysis methods, together
with clustering and other topics.)

J.G. Campbell. 1978. Linear Transformations in Pattern Recognition.
Plessey Co. Havant U.K. unpublished memorandum.

J.G. Campbell and A.A. Hashim. Fuzzy Sets, Pattern Recognition, Linear
estimation, and Neural Networks - A Unification of the Theory with Rel-
evance to Remote Sensing. in A.P. Cracknell, and R.A. Vaughan (eds.)
Proc. 18th Annual Conf. of the Remote Sensing Society, The Remote
Sensing Society, 1992.

C. Chatfield and A.J. Collins, Introduction to Multivariate Analysis,
Chapman and Hall, London, 1980.

(A good introductory textbook.)

E. Diday, J. Lemaire, J. Pouget and F. Testu, Eléments d’Analyse de
Données, Dunod, Paris, 1982.

(Describes a large range of methods.)

R. Duda and P. Hart, Pattern Classification and Scene Analysis, Wiley,
New York, 1973.

(Excellent treatment of many image processing problems.)
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19.
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22.

23.

24.
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. R.A. Fisher, “The use of multiple measurements in taxonomic problems”,
The Annals of Eugenics, 7, 179-188, 1936.

(Still an often referenced paper; contains the famous Iris data.)

D.H. Foley, and J.W. Sammon. An Optimal Set of Discriminant Vectors.
IEEFE Trans. Comp. March 1975

K. Fukunaga, Introduction to Statistical Pattern Recognition, Academic
Press, New York, 1972.

D.J. Hand, Discrimination and Classification, Wiley, New York, 1981.
(A comprehensive description of a wide range of methods; very recom-
mendable.)

International Mathematical and Statistical Library (IMSL), Manual sec-
tions on ODFISH, ODNORM, etc.

(A useful range of algorithms is available in this widely used subroutine
library.)

M. James, Classification Algorithms, Collins, London, 1985.

(A readable introduction.)

M.G. Kendall, Multivariate Analysis, Griffin, London, 1980 (2nd ed.).
(Dated in relation to computing techniques, but exceptionally clear and
concise in its treatment of many practical problems.)

P.A. Lachenbruch, Discriminant Analysis, Hafner Press, New York, 1975.
J.L. Melsa and D.L. Cohn, Decision and Estimation Theory, McGraw—
Hill, New York, 1978.

(A readable decision theoretic perspective.)

W.K. Pratt. Digital Image Processing. 2nd. ed. Wiley- Interscience,
1991.

J.M. Romeder, Méthodes et Programmes d’Analyse Discriminante, Dunod,
Paris, 1973.

(A survey of commonly-used techniques.)

Statistical Analysis System (SAS), SAS Institute Inc., Box 8000, Cary,

NC 27511-8000, USA; Manual chapters on STEPDISC, NEIGHBOUR,
etc.

(A range of relevant algorithms is available in this, — one of the premier

statistical packages.)

C.W. Therrien. Decision Estimation and Classification. John Wiley and
Sons, 1989.

M. Turk and A. Pentland. Eigenfaces for Recognition. J. Cognitive
Neuroscience. Vol. 3, No. 1, 1991.
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4.4 Software and Sample Implementation
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4.4.1 Program Listing: Linear Discriminant Analysis

[ e o o

Carry out a LINEAR DISCRIMINANT ANALYSIS, assigning ungrouped
items to the closest group centre, using the Mahalanobis
distance.

To call: CALL LDA(N,M,DATA,GP,IPRINT,MEAN,MGP,TOTAL,DIFFVC,
W1,W2,IERR) where

N, M : integer dimensions of

DATA : input data (real).

On output the first column of DATA contains projections
of all N items on the line connecting the two group
means. Zero is the boundary point.

GP : Integer vector of length N giving group assignments. An
unassigned item has group 0. Otherwise groups 1 and 2
will be looked for, and other values here are not
acceptable.

IPRINT: integer; print options (= 3: full; otherwise none).

MEAN : real vector of length M (number of attributes or
variables).

MGP : real array of dimensions 2 by M.

TOTAL : real array of dims. M by M; on output contains inverse
of total variance/covariance matrix.

DIFFVC: real vector of length M.

Wi, W2: real vectors of length M.

Inputs here are N, M, DATA, GP, IPRINT (and IERR).

The principle output information is contained in DATA.

IERR = 1 means that more than two groups have been specified;

IERR = 2 means that the total variance-covariance matrx was
singular.

Note: we require N > M > 2, to prevent the seeking of the
inverse of a singular matrix.

cNoNosNoNsEosNsNsNoNoNoNoNoNoNoNoNoNoNoNoNoNoNoNoNoNoNoNoNoNoNoNoNoNoNo Mo N el

Q

SUBROUTINE LDA(N,M,DATA,GP,IPRINT,MEAN,MGP,TOTAL,DIFFVC,
X W1,W2,IERR)

REAL DATA(N,M), TOTAL(M,M), MEAN(M), MGP(2,M)

REAL DIFFVC(M), Wi(M), W2(M)

INTEGER GP(N), NOG(2), G

C Form global mean.

IERR = 0
NEFF = 0
DOBOI=1, N
IF (GP(I).NE.O) NEFF = NEFF + 1
IF (GP(I).LE.2) GOTO 40
IERR = 1
GOTO 9000
40  CONTINUE
50 CONTINUE

DO 200 J =1, M
MEAN(J) = 0.0
DO 100 I =1, N



4.4. SOFTWARE AND SAMPLE IMPLEMENTATION 137

Q

Q

Q

Q

Q

IF (GP(I).NE.O) MEAN(J) = MEAN(J) + DATA(I,J)
100 CONTINUE
MEAN(J) = MEAN(J)/FLOAT(NEFF)
200 CONTINUE

Form (total) variance-covariance matrix.

DO 500 J1 =1, M
DO 400 J2 =1, M
TOTAL(J1,J2) = 0.0
DD 300 I =1, N
IF (GP(I).NE.0) TOTAL(J1,J2) = TOTAL(J1,J2) +
X (DATA(I,J1)-MEAN(J1))*(DATA(I,J2)-MEAN(J2))

300 CONTINUE

TOTAL(J1,J2) = TOTAL(J1,J2)/FLOAT(NEFF)
400 CONTINUE
500 CONTINUE

IMAT = 1
IF (IPRINT.EQ.3) CALL OUTMAT(IMAT,M,TOTAL)

Form group means.

DO 700 J =1, M
DO 600 K =1, 2
MGP(K,J) = 0.0
600 CONTINUE
700  CONTINUE

DO 900 I =1, N

G = GP(I)

IF (G.EQ.0) GOTD 900

NOG(G) = NOG(G) + 1

DO 800 J =1, M

MGP(G,J) = MGP(G,J) + DATA(I,J)

800 CONTINUE
900  CONTINUE

DO 1100 K =1, 2
DO 1000 J =1, M
MGP(X,J) = MGP(X,J)/N0OG(K)
1000 CONTINUE

1100 CONTINUE
Invert variance-covariance matrix.

CALL MATINV(M,TOTAL,D,W1,W2)
IF (D.GT.0.00001) GOTO 1150
IERR = 2
GOTO 9000
1150  CONTINUE

Form difference vector of group mean vectors.
DO 1200 J =1, M
DIFFVC(J) = MGP(1,J) - MGP(2,J)
MEAN(J) = (MGP(1,J) + MGP(2,J))/2.
1200  CONTINUE

Determine projections and output them.

CALL PROJX(N,M,DATA,MEAN,W1,TOTAL,DIFFVC)
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IF (IPRINT.EQ.3) CALL QUTPRX(N,M,DATA)

C
C
C
9000  CONTINUE
RETURN
END
O a2 2 B o
C
C Output a matrix.
C
C ____________________________________________________________
SUBROUTINE OUTMAT(IMAT,M,ARRAY)
C
C Output array.
C
DIMENSION ARRAY(M,M)
C

IF (IMAT.EQ.1)WRITE (6,900)
DO 100 K1 = 1, M
WRITE (6,1000) (ARRAY(K1,K2),K2=1,M)
100  CONTINUE

900  FORMAT(’ VARIANCE/COVARIANCE MATRIX FOLLOWS.’,/)
1000  FORMAT(10(2X,F8.4))

RETURN
END
O 2 2 o A
C
C Invert a symmetric matrix and calculate its determinant.
C
C
C To call: CALL MATINV(M,ARRAY,DET,W1,W2) where
C
C
C M : dimension of ...
C ARRAY : input matrix which is replaced by its inverse.
C NORDER : degree of matrix (order of determinant)
C DET : determinant of input matrix.
C Wi, W2 : work vectors of dimension M.
C
C
C Reference: Philip B Bevington, "Data Reduction and Error
C Analysis for the Physical Sciences", McGraw-Hill,
C New York, 1969, pp. 300-303.
C
c ______________________________________________________________
SUBROUTINE MATINV(M,ARRAY,DET,IK,JK)
REAL ARRAY(M,M), IK(M), JK(M)
C
10 DET = 1.0
11 DO 100 K =1, M
[ Find largest element ARRAY(I,J) in rest of matrix.
AMAX = 0.0
21 D030 I =K, M
DO 30 J =K, M
23 IF (ABS(AMAX)-ABS(ARRAY(I,J))) 24,24,30
24 AMAX = ARRAY(I,J)
IK(K) = I
JK(K) =7
30 CONTINUE

[ Interchange rows and columns to put AMAX in ARRAY(K,K).
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31 IF (AMAX) 41,32,41
32 DET = 0.0

GOTO 140
a1 I = IK(K)

IF (I-K) 21,51,43
43 DO 50 J =1, M

SAVE = ARRAY(K,J)
ARRAY(K,J) = ARRAY(I,J)

50 ARRAY(I,J) = -SAVE
51 J = JK(K)

IF (J-K) 21,61,53
53 D060 I =1, M

SAVE = ARRAY(I,K)
ARRAY(I,K) = ARRAY(I,J)

60 ARRAY(I,J) = -SAVE
C Accumulate elements of inverse matrix.

61 DO70 I =1, M

IF (I-K) 63,70,63
63 ARRAY(I,K) = -ARRAY(I,K)/AMAX
70 CONTINUE
71 D08 I=1, M

DO 80 J =1, M

IF (I-K) 74,80,74

74 IF (J-K) 75,80,75
75 ARRAY(I,J) = ARRAY(I,J) + ARRAY(I,K)*ARRAY(K,J)
80 CONTINUE
81 DO 90 J =1, M

IF (J-K) 83,90,83
83 ARRAY(K,J) = ARRAY(K,J)/AMAX
90 CONTINUE

ARRAY(K,K) = 1.0/AMAX
100  DET = DET * AMAX
C Restore ordering of matrix.
101 DO 130 L =1, M
K=M-L+1

J = IK(K)
IF (J-K) 111,111,105
105 DO 110 I =1, M

SAVE = ARRAY(I,K)
ARRAY(I,K) = -ARRAY(I,J)

110 ARRAY(I,J) = SAVE
111 I = JK(K)

IF (I-K) 130,130,113
113 DO 120 J =1, M

SAVE = ARRAY(K,J)
ARRAY(K,J) = -ARRAY(I,J)

120 ARRAY(I,J) = SAVE
130  CONTINUE
140  RETURN

END

[ i s I o S S A o S
C
C Output projections of row points.

c

C _____________________________________________________________
SUBROUTINE OUTPRX(N,M,PRJN)
REAL PRJN (N, M)

c

c

NUM = 1
WRITE (6,1000)
WRITE (6,1010)
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WRITE (6,1020)
DO 100 K = 1, N
WRITE (6,1030) K, (PRIN(K,J),J=1,NUM)
100  CONTINUE

1000  FORMAT(1HO, ’PROJECTIONS OF ROW-POINTS FOLLOW.’,/)
1010  FORMAT(’ OBJECT PROJN’)

1020  FORMAT(’ =--=-= =—==--= ”)
1030  FORMAT(I5,2X,F8.4)

RETURN

END

[ s B s e S T L T B B B S S B

C Form projections of row-points on factors.

SUBROUTINE PROJX(N,M,DATA,MEAN,VEC,TOTINV,DIFF)
REAL DATA(N,M), MEAN(M), VEC(M), TOTINV(M,M), DIFF(M)

NUM = 1
DO 300 K = 1, N
DOSOL=1,M
VEC(L) = DATA(K,L)
50 CONTINUE

DO 200 I = 1, NUM
DATA(K,I) = 0.0

DO 100 J1 =1, M
DO 75 J2 =1, M
DATA(K,I) = DATA(K,I) + (VEC(J1)-MEAN(J1))*
X TOTINV(J1,J2)*DIFF(J2)
75 CONTINUE
100 CONTINUE
200 CONTINUE

300 CONTINUE

RETURN
END
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4.4.2 Program Listing: Multiple Discriminant Analysis

[ e B o o S E S B B A A S SR

Carry out a MULTIPLE DISCRIMINANT ANALYSIS
(DISCRIMINANT FACTOR ANALYSIS,
CANONICAL DISCRININANT ANALYSIS).

To call: CALL MDA(N,M,NG,DATA,GP,IPRINT,NOG,MEAN,MGP,TOTAL,
BETWEE,BETW2,CPROJ,W1,W2, IERR) where

N, M : integer dimensions of ...

DATA : input data (real).
On output the first NG-1 columns of DATA contain projns.
of the N items on the discriminant factors.

NG : (integer) number of groups.

GP : Integer vector of length N giving group assignments.
Must be specified correctly - no Os or values > NG.

IPRINT: integer; print options (= 3: full; otherwise none).

NOG  : integer vect. of len. NG (to contain gp. cardinalities).
MEAN : real vector of length M (number of attributes or vbes).
MGP : real array of dimensions 2 by M.

TOTAL : real array of dims. M by M; on output contains inverse
of total variance/covariance matrix.

BETWEE: real array of dimensions NG by NG.

BETW2 : real array of dimensions NG by NG.

CPROJ : real array of dimensions M by NG; on output contains the
coefficients of the discriminant factors in terms of the
original variables.

W1, W2: real vectors of length M.

IERR : initially O; = 1 if there is no convergence in the TQL2
eigenroutine; = 2 if the total variance-covariance to be
inverted is singular, - in this case, check that there
are no columns with identical values, that N > M > NG,
etc.

Inputs here are N, M, NG, DATA, GP, IPRINT (and IERR).

The principle output information is contained in DATA and CPROJ;
and W1(NG-1), W1(NG-2) ... contain the eigenvalues in decreasing
order.

Notes: we require that N > M > NG (otherwise, an error is likely
in the matrix inversion routine due to singularity).
NG-1 eigenvalues eigenvectors are output.

cNoNoNsEsNoNsNoNoNoNoNoNoNoNoNoNoNoNoNoNoNoNoNoNoNoNoNoNoNoNoNoNoNoNoNoNoNoNoNolNoNoNo N

c __________________________________________________________________
SUBROUTINE MDA(N,M,NG,DATA,GP,IPRINT,NOG,MEAN,MGP,TOTAL,
X BETWEE,BETW2,CPR0J,W1,W2, IERR)
REAL DATA(N,M), TOTAL(M,M), MEAN(M), MGP(NG,M)
REAL Wi(M), wW2(M), BETW2(NG,NG), CPROJ(M,NG)
REAL BETWEE (NG, NG)
INTEGER GP(N), NOG(NG), G
¢
C Form global mean.
¢
DO 200 J =1, M
MEAN(J) = 0.0
DO 100 I =1, N
MEAN(J) = MEAN(J) + DATA(I,J)
100 CONTINUE

MEAN(J) = MEAN(J)/FLDAT(N)



142 CHAPTER 4. DISCRIMINANT ANALYSIS

200 CONTINUE

Q

Form (total) variance-covariance matrix.

DO 500 J1 = 1, M
DO 400 J2 = 1, M
TOTAL(J1,J2) = 0.0
DO 300 I =1, N
TOTAL(J1,J2) = TOTAL(J1,J2) +
X (DATA(I,J1)-MEAN(J1))*(DATA(I,J2)-MEAN(J2))

300 CONTINUE

TOTAL(J1,J2) = TOTAL(J1,J2)/FLOAT(N)
400 CONTINUE
500  CONTINUE

(@

IMAT =1
CALL OUTMAT(IMAT,M,TOTAL)

Form group means.

aQaaoaaaQ

DO 700 J =1, M
DO 600 K = 1, NG
MGP(K,J) = 0.0
600 CONTINUE
700  CONTINUE

DO 900 I =1, N

G = GP(I)

IF (G.EQ.0) GOTO 9000

NOG(G) = NOG(G) + 1

DO 800 J =1, M

MGP(G,J) = MGP(G,J) + DATA(I,J)

800 CONTINUE
900  CONTINUE

DO 1100 K = 1, NG
DO 1000 J =1, M
MGP(K,J) = MGP(X,J)/N0OG(K)
1000 CONTINUE
1100 CONTINUE
C
C Invert variance-covariance matrix.
C
CALL MATINV(M,TOTAL,D,W1,W2)
IF (D.GT.0.000001) GOTO 1150
IERR = 2
GOTO 9000
1150 CONTINUE
IMAT = 2
CALL OUTMAT(IMAT,M,TOTAL)

Form the symmetric variant of the BETWEE-groups
variance-covariance matrix for diagonalization.

Qoo

DO 1200 K1 = 1, NG
DO 1200 X2 = 1, NG
BETWEE(K1,K2) = 0.0

DO 1200 J1 =1, M
DO 1200 J2 = 1, M
D1 = MGP(K1,J1) - MEAN(J1)
D2 = FLOAT(NOG(K1))/FLOAT(N)
D2 = SQRT(D2)
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D3 = MGP(XK2,J2) - MEAN(J2)

D4 = FLOAT(NOG(K2))/FLOAT(N)

D4 = SQRT(D4)

BETWEE(K1,K2) = BETWEE(K1,K2) +

X (D1+D2)*TOTAL(J1,J2)*(D3*D4)
1200  CONTINUE
¢
IMAT = 4
¢ CALL OUTMAT (IMAT,M,TOTAL)
¢
C Carry out eigenreduction.
¢
NG2 = NG
CALL TRED2(NG,NG2,BETWEE,W1,W2,BETW2)
CALL TQL2(NG,NG2,W1,W2,BETW2,IERR)
IF (IERR.NE.O) GOTD 9000
¢
C Qutput eigenvalues and eigenvectors.
¢
IF (IPRINT.GT.1) CALL OUTEVL(N,M,NG,W1)
IF (IPRINT.GT.1) CALL OUTEVC(N,M,NG,BETW2,NG-1)
¢
C Convert eigenvectors in NG-space to those in M-space.
¢

DO 1300 J =1, M
DO 1300 K = 1, NG
CPROJ(J,K) = 0.0
DO 1300 J2 =1, M
DO 1300 K2 = 1, NG
D1 = MGP(K2,J2) - MEAN(J2)
D2 = FLOAT(NOG(K2))/FLOAT(N)
D1 = D1*SQRT(D2)
CPROJ(J,K)=CPROJ(J,K)+
X TOTAL(J,J2)*D1*BETW2(K2,NG-K+1)
1300  CONTINUE
IF (IPRINT.GT.1) CALL OUTEVC(N,NG,M,CPROJ,NG-1)

¢

C Determine projections and output them.

¢
CALL PROJX(N,M,NG,DATA,MEAN,CPROJ,W2,TOTAL)
IF (IPRINT.EQ.3) CALL OUTPRX(N,M,NG,DATA)

¢

¢

¢

9000  CONTINUE

RETURN
END

C ___________________________________________________________
SUBROUTINE OUTMAT(IMAT,M,ARRAY)
DIMENSION ARRAY(M,M)

¢

WRITE (6,900) IMAT
DO 100 K1 =1, M
WRITE (6,1000) (ARRAY(K1,K2),K2=1,M)
100  CONTINUE

900 FORMAT(’> IMAT =’,I6)
1000 FORMAT(10(2X,F8.4))
RETURN
END
(O R S Y
C
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C Invert a symmetric matrix and calculate its determinant.
C
C
C To call: CALL MATINV(M,ARRAY,DET,W1,W2) where
C
C
cC M : dimension of ...
C ARRAY : input matrix which is replaced by its inverse.
C NORDER : degree of matrix (order of determinant)
C DET : determinant of input matrix.
C Wi, W2 : work vectors of dimension M.
C
C
C Reference: Philip B Bevington, "Data Reduction and Error
C Analysis for the Physical Sciences", McGraw-Hill,
C New York, 1969, pp. 300-303.
C
c ______________________________________________________________
SUBROUTINE MATINV(M,ARRAY,DET,IK,JK)
REAL ARRAY (M,M), IK(M), JK(M)
C
10 DET = 1.0
11 DO 100 K =1, M
¢ Find largest element ARRAY(I,J) in rest of matrix.
AMAX = 0.0
21 D030 I =K, M
DO 30 J =K, M
23 IF (ABS(AMAX)-ABS(ARRAY(I,J))) 24,24,30
24 AMAX = ARRAY(I,J)
IK(K) = I
JK(K) =7J
30 CONTINUE
[ Interchange rows and columns to put AMAX in ARRAY(K,K).
31 IF (AMAX) 41,32,41
32 DET = 0.0
GOTO 140
41 I = IK(K)
IF (I-K) 21,51,43
43 D050 J=1, M
SAVE = ARRAY(K,J)
ARRAY(X,J) = ARRAY(I,J)
50 ARRAY(I,J) = -SAVE
51 J = JK(X)
IF (J-K) 21,61,53
53 D060 I=1, M
SAVE = ARRAY(I,K)
ARRAY(I,K) = ARRAY(I,J)
60 ARRAY(I,J) = -SAVE
C Accumulate elements of inverse matrix.
61 D070 I =1, M
IF (I-K) 63,70,63
63 ARRAY(I,K) = -ARRAY(I,K)/AMAX
70 CONTINUE
71 D08 I=1, M
D080 J=1, M
IF (I-K) 74,80,74
74 IF (J-K) 75,80,75
75 ARRAY(I,J) = ARRAY(I,J) + ARRAY(I,K)*ARRAY(K,J)
80 CONTINUE
81 D090 J =1, M

IF (J-K) 83,90,83
83 ARRAY(K,J) = ARRAY(K,J)/AMAX
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90 CONTINUE
ARRAY(K,K) = 1.0/AMAX
100  DET = DET * AMAX
C Restore ordering of matrix.
101 DO 130 L =1, M
K=M-L+1

J = IK(K)
IF (J-K) 111,111,105
105 DO 110 I =1, M

SAVE = ARRAY(I,K)
ARRAY(I,K) = -ARRAY(I,J)

110 ARRAY(I,J) = SAVE
111 I = JK(K)

IF (I-K) 130,130,113
113 DO 120 J =1, M

SAVE = ARRAY(K,J)
ARRAY(K,J) = -ARRAY(I,J)

120 ARRAY(I,J) = SAVE
130  CONTINUE
140  RETURN

END

O B B B L A A

Reduce a real, symmetric matrix to a symmetric, tridiagonal
matrix.

To call: CALL TRED2(NM,N,A,D,E,Z) where

NM = row dimension of A and Z;

N = order of matrix A (will always be <= NM);

A = symmetric matrix of order N to be reduced to tridiagonal
form;

D = vector of dim. N containing, on output, diagonal elements of
tridiagonal matrix;

E = working vector of dim. at least N-1 to contain subdiagonal
elements;

Z = matrix of dims. NM by N containing, on output, orthogonal
transformation matrix producting the reduction.

Normally a call to TQL2 will follow the call to TRED2 in order
to produce all eigenvectors and eigenvalues of matrix A.

Algorithm used: Martin et al., Num. Math. 11, 181-195, 1968.
Reference: Smith et al., Matrix Eigensystem Routines - EISPACK

Guide, Lecture Notes in Computer Science 6, Springer-Verlag,
1976, pp. 489-494.

ecNoNoNoNosNoNsNsNoNoNoNoNoNoNoNoNoNoNoNoNoNoNoNoNoNe!

C _________________________________________________________________
SUBROUTINE TRED2(NM,N,A,D,E,Z)

c
REAL A(NM,N),D(N),E(N),Z(NM,N)

c

DO 100 I =1, N
DO 100 J =1, I
z(1,3) = A(I,D)
100  CONTINUE
IF (N.EQ.1) GOTO 320
DO 300 II =2, N
I=N+2-1II
L=I-1
H=0.0

145
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SCALE = 0.0
IF (L.LT.2) GOTO 130
DO 120 K =1, L
SCALE = SCALE + ABS(Z(I,X))

120 CONTINUE

IF (SCALE.NE.0.0) GOTO 140
130 E(I) = Z(I,L)

GOTO 290
140 DO 160 K =1, L

Z(I,K) = Z(I,K)/SCALE
H=H+ Z(I,K)*Z(I,K)
150 CONTINUE

F = Z(I,L)

G = -SIGN(SQRT(H),F)
E(I) = SCALE * G
=H-F*G
Z(I,L) =F - G

= 0.0

=2

L]

DO 240 J =1, L
zZ(J,1) = Z(I,J)/H
G =0.0
C Form element of A*U.
DO 180 K =1, J
G =G+ Z(J,K)*Z(I,K)
180 CONTINUE
JPL =J + 1
IF (L.LT.JP1) GOTO 220
DO 200 K = JP1, L
G =G+ Z(K,J)*Z(I,K)
200 CONTINUE
C Form element of P where P =1 - U U’ / H .
220 E(J) = G/H
F=F+ EQW) *x Z(I,J)
240 CONTINUE
HH = F/(H + H)
C Form reduced A.
DO 260 J =1, L
F = Z(1,J)
G =EQJ) - HH * F
EWJ) =G
DO 250 K =1, J
Z(J,K) = Z(J,K) - F+E(K) - G*Z(I,K)
250 CONTINUE
260 CONTINUE
290 D(I) = H
300 CONTINUE
320 D(1) = 0.0
E(1) = 0.0
C Accumulation of transformation matrices.
DO 500 I =1, N
L=I-1
IF (D(I).EQ.0.0) GOTO 380
DO 360 J =1, L

G =0.0
DO 340 K = 1, L
G =G+ Z(I,K) * Z(K,J)
340 CONTINUE
DO 350 K = 1, L

Z(K,J) = Z(K,J) - G * Z(X,I)
350 CONTINUE
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360 CONTINUE
380 D(I) = Z(I,I)
Z(I,I) = 1.0

IF (L.LT.1) GOTD 500
DO 400 J =1, L

Z(I,J) = 0.0
Z(J,I) = 0.0
400 CONTINUE
500  CONTINUE
C
RETURN

END
[ i B B B n

Determine eigenvalues and eigenvectors of a symmetric,
tridiagonal matrix.

To call: CALL TQL2(NM,N,D,E,Z,IERR) where

NM = row dimension of Z;

= order of matrix Z;

vector of dim. N containing, on output, eigenvalues;

working vector of dim. at least N-1;

Z = matrix of dims. NM by N containing, on output, eigenvectors;
IERR = error, normally O, but 1 if no convergence.

N
D
E

Normally the call to TQL2 will be preceded by a call to TRED2 in
order to set up the tridiagonal matrix.

Algorithm used: QL method of Bowdler et al., Num. Math. 11,
293-306, 1968.

Reference: Smith et al., Matrix Eigensystem Routines - EISPACK
Guide, Lecture Notes in Computer Science 6, Springer-Verlag,
1976, pp. 468-474.

eNeoNoNoNoNoNoNsNoNoNoNoNoNoNoNoNoNoNoNeoNeoNe N

C _________________________________________________________________
SUBROUTINE TQL2(NM,N,D,E,Z,IERR)

C
REAL D(N), E(N), Z(NM,N)
DATA EPS/1.E-12/

C

IERR = 0
IF (N.EQ.1) GOTO 1001
DO 100 I = 2, N
E(I-1) = E(I)
100  CONTINUE

F =0.0
B =0.0
E(N) = 0.0

D0 240 L =1, N
J=0
H = EPS = (ABS(D(L)) + ABS(E(L)))
IF (B.LT.H) B =H
C Look for small sub-diagonal element.
DO 110 M =L, N
IF (ABS(E(M)).LE.B) GOTO 120

¢ E(N) is always O, so there is no exit through the
C bottom of the loop.
110 CONTINUE

120 IF (M.EQ.L) GOTD 220

147
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130 IF (J.EQ.30) GOTO 1000

J=J+1

C Form shift.
L1 =L +1
G = D(L)
P = (D(L1)-G)/(2.0%E(L))
R = SQRT(P*P+1.0)
D(L) = E(L)/(P+SIGN(R,P))
H = G-D(L)

DO 140 I = L1, N
D(I) = D(I) - H
140 CONTINUE

F=F+H
C QL transformation.
P = D(M)
c=1.0
S =0.0
=M-1L

DO 200 II =1, MML
I =M-1II
G =C * E(I)
H=Cx*x P
IF (ABS(P).LT.ABS(E(I))) GOTO 150
C = E(ID/P
R = SQRT(C*C+1.0)
E(I+1) =S * P * R
S =C/R
cC=1.0/R
GOTO 160
150 C = P/E(I)
R = SQRT(CxC+1.0)
E(I+1) =S * E(I) * R
S =1.0/R
C=C=x*S
160 P=Cx*xD(I) -8 *G
D(I+1) =H + S * (C *x G + S * D(I))
C Form vector.
DD 180 K = 1, N
H = Z(K,I+1)
Z(K,I+1) =S * Z(K,I) + C * H
Z(K,I) = C * Z(X,I) - S * H
180 CONTINUE
200 CONTINUE
E(L) =S * P
D(L) =C % P
IF (ABS(E(L)).GT.B) GOTOD 130
220 D(L) = D(L) + F
240 CONTINUE

C Order eigenvectors and eigenvalues.
DO 300 II =2, N

I=1II -1

K=1I

P = D(I)

DO 260 J = II, N
IF (D(J).GE.P) GOTO 260
K=17J
P = D(J)

260 CONTINUE
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280
300

C
1000
1001

IF (K.EQ.I) GOTO 300
D(K) = D(I)
D(I) =P
D0 280 J =1, N
P =2(J,I)
z(J,1) = 2(J,K)
Z(J,K) = P
CONTINUE
CONTINUE

GOTO 1001

Set error - no convergence after 30 iterations.
IERR = 1

RETURN

END

[ e i o s

¢

C Output eigenvalues in order of decreasing value.

100

200

SUBROUTINE OUTEVL(N,M,NG,VALS)
DIMENSION VALS (NG)

TOT = 0.0
DO 100 K = 2, NG

TOT = TOT + VALS(K)
CONTINUE

WRITE (6,1000)

CUM = 0.0

K=NG + 1

WRITE (6,1010)

WRITE (6,1020)

CONTINUE

K=K-1

CUM = CUM + VALS(K)

VPC = VALS(K) * 100.0 / TOT
VCPC = CUM * 100.0 / TOT
WRITE (6,1030) VALS(K),VPC,VCPC
IF (K.GT.2) GOTD 200

RETURN

1000 FORMAT(1HO,’EIGENVALUES FOLLOW.’,/)
1010 FORMAT

X(’ Eigenvalues As Percentages Cumul. Percentages’)

1020 FORMAT

1030 FORMAT(F10.4,9X,F10.4,10X,F10.4)

END

O i T

C Output FIRST SEVEN eigenvectors associated with eigenvalues in
C decreasing order.

SUBROUTINE OUTEVC(N1,N2,N3,VECS,N4)
DIMENSION VECS(N3,N3)

NUM = MINO(N4,7)
WRITE (6,1000)
WRITE (6,1010)
WRITE (6,1020)
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DO 100 K1 =1, N3
WRITE (6,1030) K1, (VECS(K1,K2),K2=1,NUM)
100  CONTINUE

RETURN
1000  FORMAT(1HO,’EIGENVECTORS FOLLOW.’,/)
1010  FDRMAT
X (’ VBLE. EV-1 EV-2 EV-3 EV-4 EV-5 EV-6
X EV-7?)
1020  FDRMAT
X (’ __________________________________________

1030  FORMAT(I5,2X,7F8.4)
END
(B Rt
¢
C Output projections on discriminant factors.

C

G m e
SUBROUTINE OUTPRX(N,M,NG,PRJN)
REAL PRIN(N,M)

C

NUM = MINO(N,M,NG,7)
WRITE (6,1000)
WRITE (6,1010)
WRITE (6,1020)
DO 100 K = 1, N
WRITE (6,1030) K, (PRJIN(K,J),J=1,NUM-1)
100  CONTINUE

1000  FORMAT(1HO, ’PROJECTIONS OF ROW-POINTS FOLLOW.’,/)

1010  FORMAT
X (’ OBJECT PROJ-1 PROJ-2 PR0OJ-3 PROJ-4 PROJ-5 PR0OJ-6
X PROJ-7’)

1020  FORMAT
X (’ __________________________________________

1030  FORMAT(I5,2X,7F8.4)
RETURN
END
L B A
¢
C Output projections of column points on up to first 7
C discriminant axes.

C

G m e
SUBROUTINE OUTPRY(N,M,NG,PRJNS)
REAL PRJINS (NG, NG)

C

NUM = MINO(N,M,MG,7)
WRITE (6,1000)
WRITE (6,1010)
WRITE (6,1020)
DO 100 K = 1, M
WRITE (6,1030) K, (PRINS(X,J),J=1,NUM)
100  CONTINUE

1000  FORMAT(1HO, ’PROJECTIONS OF COLUMN-POINTS FOLLOW.’,/)

1010  FORMAT
X (* VBLE. PR0OJ-1 PROJ-2 PR0OJ-3 PROJ-4 PROJ-5 PR0OJ-6
X PROJ-77)

1020  FORMAT
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1030  FORMAT(I5,2X,7F8.4)
RETURN
END
L B SR
¢
C Form projections of row-points on (up to) first 7 factors.

c
C _______________________________________________________________
SUBROUTINE PROJX(N,M,NG,DATA,MEAN,EVEC,VEC,TOTINV)
REAL  DATA(N,M), EVEC(M,M), VEC(M), TOTINV(M,M), MEAN(M)
c
NUM = MINO(N,M,NG,7)
DO 300 K =1, N
DOS0L =1, M
VEC(L) = DATA(K,L)
50 CONTINUE
DO 200 I = 1, NUM
DATA(K,I) = 0.0
DO 100 J1 =1, M
c DO 75 J2 =1, M
DATA(K,I) = DATA(K,I) + (VEC(J1) - MEAN(J1))#
X EVEC(J1,I)
75 CONTINUE
100 CONTINUE
200 CONTINUE
300  CONTINUE
c
RETURN

END
O 2 s e S A
¢
C Determine projections of column points on (up to) 7 factors.

SUBROUTINE PROJY(N,M,NG,EVALS,A,Z,VEC)
REAL EVALS(M), A(M,M), Z(M,M), VEC(M)

NUM = MINO(N,M,NG,7)
DO 300 J1 =1, M
DOBOL =1, M
VEC(L) = A(J1,L)
50 CONTINUE
DO 200 J2 = 1, NUM
A(J1,32) = 0.0
DO 100 J3 =1, M
A(J1,J2) = A(J1,J2) + VEC(J3)*Z(J3,M-J2+1)
100 CONTINUE
IF (EVALS(M-J2+1).GT.0.0) A(J1,J2)
X A(J1,J2)/SQRT(EVALS(M-J2+1))
IF (EVALS(M-J2+1).EQ.0.0) A(J1,J2)
200 CONTINUE
300 CONTINUE

0.0

RETURN
END
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4.4.3 Program Listing: K-NNs Discriminant Analysis

O e o B S A AR S

C
C Carry out a K-NN DISCRIMINANT ANALYSIS,
C with two groups defined in a training set, and with
C assignment of members of a test set.
C
C Parameters:
C
C TRAIN(N,M) training set, where first N1 rows relate to the
C first group, and the next N2 rows to the second
C group. Must have N1 + N2 = N.
C TEST(N3,M) test set;
C K number of nearest neighbours to consider;
C KLIST(K), DK(K), KPOP(K) are used for storing the K NNs,
C their distances to the object under consider-
C ation, and the group to which the NNs belong.
C
c _________________________________________________________________
SUBROUTINE KNN(TRAIN,N1,N2,N,TEST,N3,M,K,KLIST,DK,KPOP)
DIMENSIQON TRAIN(N,M),TEST(N3,M)
DIMENSION KLIST(K),DK(K),KPOP(K)
C
WRITE(6,22)
WRITE(6,33)
C
DO 90 I = 1, N3
DO 10 IX = 1, K
KLIST(IX) = 0
DK(IX) = 1.E+15
KPOP(IX) = 0
10 CONTINUE
IND = 0
DD 38 I2 = 1, N1
CALL DIST(I2,TRAIN,I,TEST,N,N3,M,D)
IF (IND.LE.O) GOTO 35
DO 30 IK = 1, K
IF (D.GE.DK(IK)) GOTO 28
IF (IK.GE.XK) GOTO 25
DO 20 IK2 = K, IK+1, -1
DK(IK2) = DK(IK2-1)
KLIST(IK2) = KLIST(IK2-1)
KPOP(IK2) = KPOP(IK2-1)
20 CONTINUE
25 CONTINUE
DK(IK) =D
KLIST(IK) = I2
KPOP(IK) =1
GOTO 36
28 CONTINUE
30 CONTINUE
GOTO 36
35 CONTINUE
IND = IND + 1
DK(IND) = D
KLIST(IND) = I2
KPOP(IND) = 1
36 CONTINUE
38 CONTINUE
C
C
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DO 68 I2 = Ni+1, N
CALL DIST(I2,TRAIN,I,TEST,N,N3,M,D)
IF (IND.LE.O0) GOTO 65
DO 60 IK = 1, K
IF (D.GE.DK(IK)) GOTO 58
IF (IK.GE.K) GOTO 55
DO 50 IK2 = K, IK+1, -1
DK(IK2) = DK(IK2-1)
KLIST(IK2) = KLIST(IK2-1)
KPOP(IK2) = KPOP(IK2-1)
CONTINUE
CONTINUE
DK(IK) = D
KLIST(IK) = I2
KPOP(IK) = 2
GOTO 66
CONTINUE
CONTINUE
GOTO 66
CONTINUE
IND = IND + 1
DK(IND) = D
KLIST(IND) = I2
KPOP(IND) = 2
CONTINUE
CONTINUE

NUM1L = 0O
NUM2 = 0
DO 80 IX =1, K
IF (KPOP(IX).EQ.1) NUM1L
IF (KPOP(IX).EQ.2) NUM2
CONTINUE
(Error check:)
IF ((NUM1+NUM2).EQ.K) GOTO 85
WRITE (6,600)
STOP
CONTINUE
IF (NUM1.GT.NUM2) WRITE (6,500) I,FLOAT(NUM1)*100./FLOAT(X)
IF (NUM2.GT.NUM1) WRITE (6,525) I,FLOAT(NUM2)*100./FLOAT(K)
IF (NUM1.EQ.NUM2) WRITE (6,550) I,FLOAT(NUM1)*100./FLOAT(X)
CONTINUE

NUML + 1
NUM2 + 1

RETURN

FORMAT(’> Object =--> group with probability’)

FORMAT (/)

FORMAT(I6,6X,° 1 ’,F8.2,%%7)

FORMAT(I6,6X,’ 2 ?,F8.2,7%°)

FORMAT(I6,6X,” 1 or 2 ’,F8.2,°% (equiprobable).’)

FORMAT(’ The total of assignments to gp. 1 and to gp. 2’,
’does not equal K; check pgm. listing; aborting.’)

SUBROUTINE DIST(I,ARR1,J,ARR2,NR1,NR2,NC,D)
DIMENSION ARR1(NR1,NC),ARR2(NR2,NC)

D =0.0

DO 10 K =1, NC

D = D + (ARR1(I,K)-ARR2(J,K))**2
CONTINUE

RETURN
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END
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4.4.4 Input Data

The input data was based on that used for Principal Components Analysis. PCA
indicated very correlated data: for this reason the discriminating potential of
variables 1, 2 and 18 only were investigated. The class assignments used were
as follows. For LDA, the first seven objects (rows) constituted group 1, and
the remaining objects constituted group 2. For MDA, three groups were used:
objects 1 to 4, objects 5 to 14, and objects 15 to 18. For KNN, the first 10
objects were taken as group 1 and the remainder as group 2. The training set
and the test set in the case of this last method were the same.

4.4.5 Sample Output: Linear Discriminant Analysis

PROJECTIONS OF ROW-POINTS FOLLOW.

0BJECT  PROJN

1 2.1423
2 1.6503
3 2.2293
4 1.3423
5 3.5538
6 1.7404
7 -0.2216
8 -0.5764
9 -1.4843
10 -1.6291
11 -1.4359
12 -1.9213
13 -2.0746
14 -2.1384
15 -2.0838
16 -2.0498
17 -2.0950
18 -2.0546

4.4.6 Sample Output: Multiple Discriminant Analysis

EIGENVALUES FOLLOW.

Eigenvalues As Percentages Cumul. Percentages

0.6985 57.0614 57.0614
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0.5256 42.9386 100.0000

EIGENVECTORS (in the group space) FOLLOW.

1 -0.4714 0.6515
2 -0.7454 -0.6546
3 -0.4714 0.3835

EIGENVECTORS (in the parameter space) FOLLOW.

1 -0.0034 0.0015
2 -0.0474 -0.1074
3 0.0358 0.0487

PROJECTIONS OF ROW-POINTS FOLLOW.

OBJECT PR0OJ-1 PR0OJ-2 PR0OJ-3 PR0OJ-4 PR0OJ-5 PR0J-6 PROJ-7

© 00 N O WN -

o
= O
[
o o
e o]
o 0
~N N
Do
[
o o
o N
o1 ©
o N
[S2

12 -0.1520 -0.4943
13 -0.1513 -0.2907
14 -0.1972 -0.1236

15 -0.3892 0.0068
16 -0.7815 0.1176
17  -1.1404 0.3730
18 -2.3961 1.2130
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4.4.7 Sample Output: K—NNs Discriminant Analysis

Object

0 N U WNR

e el el
0 N U WN P O O

-->

group with probability

MNNMNNMNNNMNNNRRRPRRREBRR R R

100

100
100

100

.00%
100.
100.
100.
100.
100.

00%
00%
00%
00%
00%

.00%
.00%
100.

66.

66.
100.
100.

00%
67%
67%
00%
00%

.00%
100.
100.
100.
100.

00%
00%
00%
00%



Chapter 5

Other Methods

5.1 The Problems

Principal Components Analysis (PCA), among whose objectives are dimension-
ality reduction and the display of data, assumes points in the usual Euclidean
space as input. For other types of input data, alternative methods exist. Such
other methods may have somewhat different objectives, which may be more
relevant for the given type of input.

Correspondence Analysis is particularly suitable for arrays of frequencies or
for data in complete disjunctive form (cf. Chapter 1). It may be described as a
PCA in a different metric (the x? metric replaces the usual Euclidean metric).
Mathematically, it differs from PCA also in that points in multidimensional
space are considered to have a mass (or weight) associated with them, at their
given locations. The percentage inertia explained by axes takes the place of
the percentage variance of PCA, — and in the former case the values can be
so small that such a figure of merit assumes less importance than in the case
of PCA. Correspondence Analysis is a technique in which it is a good deal
more difficult to interpret results, but it considerably expands the scope of a
PCA-type analysis in its ability to handle a wide range of data.

Principal Coordinates Analysis is very similar to PCA. The problem here is
that rather than the usual objects x variables array, we are given an objects
X objects distance matrix. A minimal amount of alteration to the approach
adopted in PCA allows this type of input data to be handled.

In Canonical Correlation Analysis, the third technique to be looked at in
this Chapter, we are given a set of objects (rows) crossed by two distinct sets
of variables (columns). The objective is to examine the relationship between
the two sets of characterisations of the same object—population. A pair of best—
fitting axes are derived in the spaces of the two sets of variables, such that in
addition these two axes are optimally correlated. Successive axes are subse-
quently obtained. Canonical Correlation Analysis is difficult to use in practice
when the two sets of variables are not highly related.

Regression Analysis, the final topic of this Chapter, is widely dealt with else-
where in the physical and statistical literature (see in particular Lutz, 1983).
For completeness in the range of important multivariate methods studied, we
introduce it and discuss a few points of relevance to astronomy. Relevant bibli-
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ographic references in astronomy in this Chapter primarily relate to regression.

5.2 Correspondence Analysis

5.2.1 Introduction

Correspondence Analysis (CA) is not unlike PCA in its underlying geometrical
bases, and the description to follow will adopt a similar perspective to that used
in Chapter 2. While PCA is particularly suitable for quantitative data, CA is
recommendable for the following types of input data, which will subsequently be
looked at more closely: frequencies, contingency tables, probabilities, categorical
data, and mixed qualitative/categorical data.

In the case of frequencies (i.e. the ij!* table entry indicates the frequency
of occurrence of attribute j for object ¢) the row and column “profiles” are of
interest. That is to say, the relative magnitudes are of importance. Use of a
weighted Euclidean distance, termed the y? distance, gives a zero distance for
example to the following 5—coordinate vectors which have identical profiles of
values: (2,7,0,3,1) and (8,28,0,12,4). Probability type values can be constructed
here by dividing each value in the vectors by the sum of the respective vector
values.

A particular type of frequency of occurrence data is the contingency table,
— a table crossing (usually, two) sets of characteristics of the population under
study. As an example, an n X m contingency table might give frequencies of
the existence of n different metals in stars of m different ages. CA allows the
study of the two sets of variables which constitute the rows and columns of
the contingency table. In its usual variant, PCA would privilege either the
rows or the columns by standardizing (cf. Section 2.2.5): if, however, we are
dealing with a contingency table, both rows and columns are equally interesting.
The “standardizing” inherent in CA (a consequence of the x? distance) treats
rows and columns in an identical manner. One byproduct is that the row and
column projections in the new space may both be plotted on the same output
graphic presentations (— the lack of an analogous direct relationship between
row projections and column projections in PCA precludes doing this in the
latter technique).

Categorical data may be coded by the “scoring” of 1 (presence) or 0 (absence)
for each of the possible categories. Such coding leads to complete disjunctive
coding, as seen in Chapter 1. It will be discussed below how CA of an array
of such complete disjunctive data is referred to as Multiple Correspondence
Analysis (MCA), and how such a coding of categorical data is, in fact, closely
related to contingency table type data.

Dealing with a complex astronomical catalogue may well give rise in practice
to a mixture of quantitative (real valued) and qualitative data. One possibility
for the analysis of such data is to “discretize” the quantitative values, and treat
them thereafter as categorical. In this way a set of variables — many more than
the initially given set of variables — which is homogeneous, is analysed.

CA is described initially below with reference to frequency or probability
type data as input. We will then look at how the same method is also used for
complete disjunctive data.
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5.2.2 Properties of Correspondence Analysis

From the initial frequencies data matrix, a set of probability data, x;;, is defined
by dividing each value by the grand total of all elements in the matrix. In CA,
each row (or column) point is considered to have an associated weight. The
weight of the i*" row point is given by z; = 3, x;; and the weight of the j*
column point is given by xz; = >, x;;. We consider the row points to have
coordinates x;;/x;, thus allowing points of the same profile to be identical (i.e.
superimposed). The following weighted Euclidean distance, the x? distance, is
then used between row points:
Pli k=Y (2 Ty

Tj I T

J

and an analogous distance is used between column points.

Table 5.1 summarizes the situation in the dual spaces. Item 4 indicates that
the Euclidean distance between points of coordinates z;; /2; and a;; /2 is not the
ordinary Euclidean distance but is instead with respect to the specified weights.
Item 5 indicates that the inertia rather than the variance will be studied, i.e.
that the masses of the points are incorporated into the criterion to be optimised.

The mean row point is given by the weighted average of all row points:

l‘ij
Ti— =T
T J
" T
K3

for j =1,2,...,m. Similarly the mean column profile has it coordinate ;.

5.2.3 The Basic Method

As in the case of PCA, we first consider the projections of the n profiles in R™
onto an axis, u. This is given by

Tij 1
>
— T Tj

J

for all 7 (note how the scalar product, used here, is closely related to the defi-
nition of distance — item 4 in Table 5.1). Let the above, for convenience, be
denoted by w;.

The weighted sum of projections uses weights x; (i.e. the row masses),
since the inertia of projections is to be maximized. Hence the quantity to be

maximized is
>~ ziw;”
i

subject to the vector u being of unit length (this, as in PCA, is required since
otherwise vector u could be taken as unboundedly large):

1
Z x—j'U,jQ =1.

J

It may then be verified using Lagrangian multipliers that optimal u is an
eigenvector of the matrix of dimensions m x m whose (j, k)" term is

Z TijTik
k2
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Space R™:

1. n row points, each of m coordinates.
2. The j** coordinate is z;; /x;.
3. The mass of point i is z;.

4. The x? distance between ¢ and k is:
2(s _ 1 (Zij _ ZTkj\2
d*(i k) = 325 (55 — 22)°
Hence this is a Euclidean distance with respect
to the weighting 1/z; (for all j).

5. The criterion to be optimised: the weighted sum
of squares of projections, where the weighting
is given by z; (for all ).

Space IR"™:

1. m column points, each of n coordinates.
2. The i*" coordinate is z;;/z;.
3. The mass of point j is x;.

4. The x? distance between column points ¢ and j is:
20, ) — 1T Tij\2
(g,0) =2 3 (G2 =37
Hence this is a Euclidean distance with respect
to the weighting 1/z; (for all 7).

5. The criterion to be optimised: the weighted sum
of squares of projections, where the weighting
is given by x; (for all j).

Table 5.1: Properties of spaces R™ and IR" in Correspondence Analysis.
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where 1 < j,k < m. (Note that this matrix is not symmetric, and that a
related symmetric matrix must be constructed for eigenreduction: we will not
detail this here.) The associated eigenvalue, )\, indicates the importance of the
best fitting axis, or eigenvalue: it may be expressed as the percentage of inertia
explained relative to subsequent, less good fitting, axes.

The results of a CA are centred (z; and x; are the j¢* and i** coordinates —
the average profiles — of the origin of the output graphic representations). The
first eigenvalue resulting from CA is a trivial one, of value 1; the associated
eigenvector is a vector of 1s (Lebart et al., 1984; Volle, 1981).

5.2.4 Axes and Factors

In the previous section it has been seen that projections of points onto axis u
were with respect to the 1/z; weighted Euclidean metric. This makes interpret-
ing projections very difficult from a human/visual point of view, and so it is
more natural to present results in such a way that projections can be simply
appreciated. Therefore factors are defined, such that the projections of row
vectors onto factor ¢ associated with axis u are given by

Z 2 ¥
J
for all i. Taking
1
=
; z;
ensures this and projections onto ¢ are with respect to the ordinary (unweighted)
Euclidean distance.
An analogous set of relationships hold in R™ where the best fitting axis, v,
is searched for. A simple mathematical relationship holds between u and v, and
between ¢ and ¢ (the latter being the factor associated with eigenvector v):

Vi =) %@'
j (2

Vg =Y i iy,
T i

These are termed transition formulas. Axes u and v, and factors ¢ and v, are
associated with eigenvalue A and best fitting higher—dimensional subspaces are
associated with decreasing values of A, determined in the diagonalization.

The transition formulas allow supplementary rows or columns to be projected
into either space. If ¢; is the j'* element of a supplementary row, with mass ¢,
then a factor loading is simply obtained subsequent to the CA:

_ 1l NGy
¥; \/ij:ﬁ(b]'

A similar formula holds for supplementary columns. Such supplementary
elements are therefore “passive” and are incorporated into the CA results sub-
sequent to the CA being carried out.



164 CHAPTER 5. OTHER METHODS

5.2.5 Multiple Correspondence Analysis

When the input data is in complete disjunctive form, CA is termed Multiple
CA (MCA). Complete disjunctive form is a form of coding where the response
categories, or modalities, of an attribute have one and only one non-zero re-
sponse (see Figure 5.1a). Ordinarily CA is used for the analysis of contingency
tables: such a table may be derived from a table in complete disjunctive form
by taking the matrix product between its transpose and itself. The symmetric
table obtained in this way is referred to as a Burt table. CA of either table gives
similar results, only the eigenvalues differing (see Lebart et al., 1984; or Volle,
1981).

A few features of the analysis of tables in complete disjunctive form will be
mentioned.

e The modalities (or response categories) of each attribute in MCA have
their centre of gravity at the origin.

e The number of nonzero eigenvalues found is less than or equal to the total
number of modalities less the total number of attributes.

e Due to this large dimensionality of the space being analyzed, it is not
surprising that eigenvalues tend to be very small in MCA. It is not unusual
to find that the first few factors can be usefully interpreted and yet account
for only a few percent of the total inertia.

The principal steps in interpreting the output of MCA, as in CA, are similar
to the interpreting of PCA output.

e The Burt table is scanned for significantly high frequencies of co-occurrence.

e The axes are interpreted in order of decreasing importance using the
modalities which contribute most, in terms of inertia, to the axes (i.e.
mass times projected distance squared). The projection coordinates serve
to indicate how far the modality can be assessed relative to the axis.

e The planar graphic representations (projections of row and column points
in the plane formed by factors 1 and 2, and by other pairs of factors) are
examined.

e The interrelationships between modalities, relative to the axes, are exam-
ined, and substantive conclusions are drawn.

It may be noted that in the variant of Correspondence Analysis looked at in
this section, the row—points are of constant weight. This allows, quite generally,
user intervention in the weighting of rows relative to columns. In our experience,
we have often obtained very similar results for a Principal Components Analysis
with the usual standardization to zero mean and unit standard deviation, on the
one hand; and on the other, a Correspondence Analysis with twice the number
of columns as the matrix analyzed by PCA such that for each column j we
also have a column j’ with value z;; = maxy x;x — x;;. This is referred to as
doubling the data.

Some typical output configurations can arise, the most well known being
the “horseshoe” shaped curve associated with pronounced linearity in the data.
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Type Age Properties
T1 T2 T3 Al A2 A3 P1 P2 P3 P4 P5
1 0 0 0 1 0 0 0 0 0 1
0 1 0 0 0 1 0 0 0 0 1
1 0 0 0 0 1 0 0 1 0 0
1 0 0 0 1 0 0 0 1 0 0
1 0 0 1 0 0 1 0 0 0 0
0 0 1 0 1 0 1 0 0 0 0
0 0 1 1 0 0 0 0 0 0 1
(a) Table in complete disjunctive form.

T1 T2 T3 Al A2 A3 P1 P2 P3 P4 P5
T1 | 4 0 0 1 2 1 1 0 2 0 1
T2 | 0 1 0 0 0 1 0 0 0 0 1
T3 |0 0 2 1 1 0 1 0 0 0 1
Al |1 0 1 2 0 0 1 0 0 0 1
A2 | 2 0 1 0 3 0 1 0 1 0 1
A3 |1 1 0 0 0 2 0 0 1 0 1
P1 |1 0 1 1 1 0 2 0 0 0 0
P2 |0 0 0 0 0 0 0 0 0 0 0
P3| 2 0 0 0 1 1 0 0 2 0 0
P4 |0 0 0 0 0 0 0 0 0 0 0
P51 1 1 1 1 1 0 0 0 0 3

(b) Burt table.

Notes:
e Attributes: Type, Age, Properties.
e Modalities: T1, T2, ..., P5.

e Row sums of table in complete disjunctive form are constant, and equal
the number of attributes.

e Each attribute x attribute submatrix of the Burt table (e.g. Ages X
Ages) is necessarily diagonal, with column totals of the table in complete
disjunctive form making up the diagonal values.

Figure 5.1: Table in complete disjunctive form and associated Burt table.
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1{1 1 1 1 0 0 O O O O O O O O
20 0 1.1.1.1.0 0 0 O 0 O 0 O
3(0 0 001 1.1.1 00 0 0 0 O
410 0 0 0001 1 1 1 00 00
5/0 0 0 00O O O 1T 1 1 1 0 O
6(0 0 0 00O OO0 OO T1T 1 1 1
1 ]
2 8
3 4

Figure 5.2: Horseshoe pattern in principal plane of Correspondence Analysis.

Figure 5.3 gives an example of the type of doubled data for which this pattern
arises. It may be explained by the constraints imposed on the pairwise distances
resulting from the input data. The one—dimensional ordering inherent in the
input data is referred to as a seriation.

5.3 Principal Coordinates Analysis

5.3.1 Description

Principal Coordinates Analysis has also been referred to as Classical Multidi-
mensional Scaling and metric scaling, and has been associated with the names
of Torgerson and Gower. It takes distances as input and produces coordinate
values as output. In this, it has been described as producing something from
nothing.

It may be useful to review a possible situation where distance input is read-
ily available whereas the raw data are not. Consider a catalogue or database
information which contains attributes which are a mixture of quantitative and
qualitative (categorical) types. Correspondence Analysis offers one approach to
the analysis of such data, by recoding all data in a qualitative form, and using
the complete disjunctive form of coding seen above. An alternative is to use a
distance for mixed data derived from the Gower coefficient described in Chapter
1, and then to use Principal Coordinates Analysis on such data.

We now describe the principles on which Principal Coordinates Analysis
is based, and how it is implemented. Consider the initial data matrix, X, of
dimensions n x m, and the “sums of squares and cross products” matrix of the
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rows:
A=XX'

aik = E Tij T
J

If d;, is the Euclidean distance between objects i and k (using row-vectors i
and k of matrix X) we have that:

A =Y (wij — z1y)°

J
_E : 2 § : 2 E e
— ng + .’Ika _2 .’Ifl]xk.]
J J J

= a;; + agpp — 2a;p- (5.1)

In Principal Coordinates Analysis, we are given the distances and we want to
obtain X. We will assume that the columns of this matrix are centred, i.e.

Zmi]’ =0.
i

It will now be shown that matrix A can be constructed from the distances
using the following formula:

1
@i, = _§(d?k —di —dj — &) (5.2)

where

1
dzz = n Ek:dzzk
2 1 2
dy, = n E :dik

1
d2:ﬁ E E d?k
i k

This result may be proved by substituting for the distance terms (using equation
5.1), and knowing that by virtue of the centring of the row vectors of matrix X,

we have
g ajr, =0
i

(since az = Ej zijxrj; and consequently in the term ), Ej TijTr; We can
separate out ). x;; which equals zero). Similarly (by virtue of the symmetry
of A) we use the fact that
Z Qi = 0.
k

Having thus been given distances, we have constructed matrix A = X X'. We
now wish to reconstruct matrix X; or, since this matrix has in fact never existed,
we require some matrix X which satisfies X X’ = A.

If matrix A is positive, symmetric and semidefinite, it will have rank p < n.
We may derive p non—zero eigenvalues, Ay > A2 > ... > A, > 0, with corre-
sponding eigenvectors u;, us,...,u,. Consider the scaled eigenvectors, defined



168 CHAPTER 5. OTHER METHODS

as f; = v/A\;u;. Then the matrix X = (fi, f5,...,f,) is a possible coordinate ma-
trix. This is proved as follows. We have, in performing the eigen—decomposition
of A:

Alli - >\iui
and by requirement
XXIIIZ' - )\llll
f1 vV )\1 u; 0
f2 AV )\2 us 0
In the left hand side, X ) u =X ) u =X - since
f, VApup 0
eigenvectors are mutually orthogonal. Continuing:
0
0
(\//\1111,\//\2112,...,\/)\pllp) \/A_z :/\illi.
0
Thus we have succeeded in constructing a matrix X, having been initially
given a set of distances. The net result is very similar to PCA, — we have a

series of orthogonal axes which indicate inherent dimensionality and which may
be used for plotting the objects studied. We have not used any set of variables or
attributes in Principal Coordinates Analysis, but on carrying out this technique
we have a set of projections on principal axes which may be used as attributes.

Principal Coordinates Analysis may be programmed using a PCA program
with relatively few changes. Rather than reading in the data and constructing
a sums of squares and cross products (SSCP) matrix, we read in a matrix of
distances and use Equation 5.2 above to form the SSCP matrix.

In practice, we might be given dissimilarities rather than distances. Then,
matrix A will be symmetric and have zero values on the diagonal but will not
be positive semidefinite. In this case negative eigenvalues are obtained. These
are inconvenient but may often be ignored if the approximate Euclidean rep-
resentation (given by the eigenvectors corresponding to positive eigenvalues) is
satisfactory.

5.3.2 Multidimensional Scaling

Principal Coordinates Analysis has been referred to as metric multidimensional
scaling. From the early 1960s onwards, non—metric multidimensional scaling
was developed and became widely used especially in the areas of psychology and
marketing. Given dissimilarities, d;;, it estimates (using iterative optimization)
Euclidean distances, d;;, such that rank orders are preserved as far as possible:

0ij < Opp = dij < dyy.

A figure of merit for the Fuclidean configuration in a space of some given di-
mension is the “stress”, a definition of which is

> (dij —6i)* > di;.

i>j i>]
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A space of low dimension is sought, coupled with a low value of the stress
criterion. Non-metric multidimensional scaling is less restrictive in its assump-
tions about input data compared to Principal Coordinates Analysis, but it may
require greater computation time. Further reading is to be found in Gordon
(1981) and Kruskal and Wish (1978).

5.4 Canonical Correlation Analysis

In Canonical Correlation (or Variate) Analysis, we are given n. objects crossed
by two sets of p and ¢ variables, respectively. The n x p matrix, X, and the n x g
matrix, Y, together give the raw data matrix Z of dimensions n X (p + ¢). As
examples of problems suitable for study using Canonical Correlation Analysis,
consider n objects with attributes defined by two different types of instrument,
by two different sets of observers, using two different photometric systems, and
SO on.

Two sets of linear combinations of row i’s coordinates are defined, relative
to X and relative to YV:

p

U; = E ;L5 u= Xa
j=1
q

Vi = E bjyij v=Yb
j=1

where a and b are vectors of constants of dimensions, respectively, p x 1 and
q x 1.

Canonical Correlation Analysis seeks two sets of linear combinations, u and
v, such that these are as highly correlated as possible. As in PCA (Chapter
2), the restriction is imposed that u and v have unit variance; and we proceed
to an optimization, using Lagrangian multipliers, which results in an eigenvalue
equation. Successive pairs of correlated linear combinations are determined.

The eigenvalues are referred to as canonical correlation coefficients. If the
first two coefficients are close to 1, there is a strong resemblance between the
two sets of variables, as measured on the first two canonical variates. For a
planar representation of the variables, we may select the canonical variates of
either group of variables, and project the other group onto this plane. As in
PCA we will seek to interpret the axes (points which are projected towards
the extremities may offer greatest help for doing this); and to look for clusters
of variables, if possible leading to indications of close association between the
variables of the two sets used.

Canonical Correlation Analysis is not as widely used as might be expected
from the generality of the problems which it can address. This is because results
are difficult to interpret, especially when canonical correlations, associating the
two sets of variables, are not high.

5.5 Regression Analysis

In linear regression we are given a set of m values, {z;,y; : j =1,...m} and we
require a fit of the form y = a + bz, the regression line of y on . We assume
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that z is fixed or controlled, i.e. that its exact value is known. The variable y is
stochastic. The problem is to predict y, given the values of z. The philosophy is
somewhat different here compared to principal components analysis and may be
easily visualized as shown in Figure 5.3. Think of = as a time-related quantity:
to predict y, we are not allowed to use future values of x.

It is assumed that the jt* y value, y;, is distributed about some mean y;
with standard deviation o;. Thus, for a given z;, we have a certain scatter in
corresponding y; values, and the eventual linear fit will be based on ;. The
distributional form of the y; values is assumed to be Gaussian. Hence the
probability of a particular value of y; is given by

1 Ly =i
— exp(—=(=/—=)).

T, ()

The simultaneous probability of a given set of m values is given by the product

of this expression, over all j:

v, 1 1~ y; — U
[[(=—exp(-5 Y _(Z—2)).
i1 V2o, 2 =9
In order to determine y; we employ the method of maximum likelihood: maxi-
mizing the above term implies minimizing the exponent. Hence we minimize
Ui — U
SU=by
=t 7
which leads to the least squares estimate of the §; values. (Linear regression
is often introduced more directly as this least squares optimizing, with weights
defined by w; = 1/03.) Using y; = a + bx;, the expression to be minimized

becomes
m

Z(yj —a— b»"fj)z_
=t i

To solve for a and b, the partial derivatives of this term with respect to a and
to b are determined, and the resulting equations solved. The expressions found
in this way for a (the intercept) and b (the slope or regression coefficient) are
given in Bevington (1969), together with approximate error bounds.

In the foregoing, a regression of y on x has been looked at. By supposi-
tion, there is variation in y but not in z. Some variation in x is acceptable in
practice, but if both variables are considered as stochastic, this linear regres-
sion is not suitable. In the case of stochastic z and error—free y, it is of course
straightforward to regress = on y.

When both 2 and y are stochastic, determining the best fitting straight
line is studied by York (1966; see also Lybanon, 1984). In this case, analytic
expressions for a and b are not feasible. Instead, given some initial estimate of
the slope, by (obtained, for instance, by a regression analysis ignoring the error
weights on z and y), iterative optimization is used to improve the value of b.

Linear regression generalizes to multiple regression when a fit of the form

Yy=ap+airy +asxrs+ ...+ a,T,

is sought, for n independent variables. The coefficients, a, are called partial
regression coefficients.
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Figure 5.3: Projections: left PCA; centre regression of y on z (usual case of
regression); right regression of x on y.

5.6 Examples and Bibliography

5.6
1

.1 Regression in Astronomy

. E. Antonello and M. Fracassini, “Pulsars and interstellar medium: mul-
tiple regression analysis of related parameters”, Astrophysics and Space
Science, 108, 187-193, 1985.

R.L. Branham Jr., “Alternatives to least—squares”, The Astronomical
Journal, 87, 928-937, 1982.

R. Buser, “A systematic investigation of multicolor photometric systems.
IT. The transformations between the UBV and RGU systems.”, Astronomy
and Astrophysics, 62, 425-430, 1978.

. C.R. Cowley and G.C.L. Aikman, “Stellar abundances from line statis-
tics”, The Astrophysical Journal, 242, 684—698, 1980.

M. Crézé, “Influence of the accuracy of stellar distances on the estima-
tions of kinematical parameters from radial velocities”, Astronomy and
Astrophysics, 9, 405-409, 1970.

M. Crézé, “Estimation of the parameters of galactic rotation and solar
motion with respect to Population I Cepheids”, Astronomy and Astro-
physics, 9, 410-419, 1970.

T.J. Deeming, “The analysis of linear correlation in astronomy”, Vistas
in Astronomy, 10, 125, 1968.

H. Eichhorn, “Least—squares adjustment with probabilistic constraints”,
Monthly Notices of the Royal Astronomical Society, 182, 355-360, 1978.

H. Eichhorn and M. Standish, Jr., “Remarks on nonstandard least—
squares problems”, The Astronomical Journal, 86, 156-159, 1981.



172

10

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

CHAPTER 5. OTHER METHODS

. M. Fracassini, L.E. Pasinetti and E. Antonello, “Pulsars and interstellar
medium”, Proceedings of a Course and Workshop on Plasma Astrophysics,
European Space Agency Special Publication 207, 319-321, 1984.

J.R. Gott IIT and E.L. Turner, “An extension of the galaxy covariance
function to small scales”, The Astrophysical Journal, 232, L.79-L81, 1979.

A. Heck, “Predictions: also an astronomical tool”, in Statistical Methods
in Astronomy, European Space Agency Special Publication 201, 1983, pp.
135-143.

(A survey article, with many references. Other articles in this conference
proceedings also use regression and fitting techniques.)

A. Heck and G. Mersch, “Prediction of spectral classification from pho-
tometric observations — application to the uvbyf photometry and the
MK spectral classification. I. Prediction assuming a luminosity class”,
Astronomy and Astrophysics, 83, 287-296, 1980.

(Stepwise multiple regression and isotonic regression are used.)

W.H. Jefferys, “On the method of least squares”, The Astronomical Jour-
nal, 85, 177-181, 1980.

W.H. Jefferys, “On the method of least squares. II.”, The Astronomical
Journal, 86, 149-155, 1981.

J.R. Kuhn, “Recovering spectral information from unevenly sampled data:
two machine—efficient solutions”, The Astronomical Journal, 87, 196-202,
1982.

T.E.Lutz, “Estimation — comments on least squares and other topics”, in
Statistical Methods in Astronomy, European Space Agency Special Pub-
lication 201, 179-185, 1983.

M.O. Mennessier, “Corrections de précession, apex et rotation galactique
estimées & partir de mouvements propres fondamentaux par une méthode
de maximum vraisemblance”, Astronomy and Astrophysics, 17, 220-225,
1972.

M.O. Mennessier, “On statistical estimates from proper motions. IIL.”,
Astronomy and Astrophysics, 11, 111-122, 1972.

G. Mersch and A. Heck, “Prediction of spectral classification from photo-
metric observations — application to the uvbyf photometry and the MK
spectral classification. II. General case”, Astronomy and Astrophysics,
85, 93-100, 1980.

J.F. Nicoll and L.E. Segal, “Correction of a criticism of the phenomeno-
logical quadratic redshift—distance law”, The Astrophysical Journal, 258,
457-466, 1982.

J.F. Nicoll and I.LE. Segal, “Null influence of possible local extragalactic
perturbations on tests of redshift—distance laws”, Astronomy and Astro-
physics, 115, 398-403, 1982.



5.6. EXAMPLES AND BIBLIOGRAPHY 173

23.

24.

25.

D.M. Peterson, “Methods in data reduction. I. Another look at least
squares”, Publications of the Astronomical Society of the Pacific, 91, 546—
552, 1979.

LE. Segal, “Distance and model dependence of observational galaxy clus-
ter concepts”, Astronomy and Astrophysics, 123, 151-158, 1983.

LLE. Segal and J.F. Nicoll, “Uniformity of quasars in the chronometric
cosmology”, Astronomy and Astrophysics, 144, 1.23-1.26, 1985.

5.6.2 Regression in General

1.

P.R. Bevington, Data Reduction and Error Analysis for the Physical Sci-
ences, McGraw—Hill, New York, 1969.

(A recommendable text for regression and fitting, with many examples.)

N.R. Draper and H. Smith, Applied Regression Analysis, Wiley, New
York, 1981 (2nd ed.).

B.S. Everitt and G. Dunn, Advanced Methods of Data Exploration and
Modelling, Heinemann Educational Books, London, 1983.

(A discursive overview of topics such as linear models and analysis of
variance; PCA and clustering are also covered.)

. M. Lybanon, “A better least—squares method when both variables have

uncertainties”, American Journal of Physics 52, 22-26, 1984.

D.C. Montgomery and E.A. Peek, Introduction to Linear Regression Anal-
ysis, Wiley, New York, 1982.

G.A.F. Seber, Linear Regression Analysis, Wiley, New York, 1977.

G.B. Wetherill, Elementary Statistical Methods, Chapman and Hall, Lon-
don, 1967.

(An elementary introduction, with many examples.)

D. York, “Least squares fitting of a straight line”, Canadian Journal of
Physics 44, 1079-1086, 1966.

(Deals with the case of stochastic independent and dependent variables.)

5.6.3 Other Techniques

Regression excepted, little to date has been accomplished in astronomy using
the other, varied, techniques discussed in this Chapter. In this, there clearly is
scope for change! Some general references follow.

1.

J.P. Benzécri, L’Analyse des Données. II. L’Analyse des Correspondances,
Dunod, Paris, 1979 (3rd ed.).

(The classical tome on Correspondence Analysis.)



174

10.

CHAPTER 5. OTHER METHODS

. W.W. Cooley and P.R. Lohnes, Multivariate Data Analysis, Wiley, New
York, 1971.

(See for Canonical Correlation Analysis, together with other techniques.)

. A.D. Gordon, Classification, Chapman and Hall, London, 1981.
(For some reading on multidimensional scaling, together with other top-
ics.)

. M. Greenacre, Theory and Applications of Correspondence Analysis, Aca-
demic Press, New York, 1984.
(As the title suggests, a detailed study of Correspondence Analysis.)

. J.B. Kruskal and M. Wish, Multidimensional Scaling, Sage, Beverly Hills,
1978.

. L. Lebart, A. Morineau and K.M. Warwick, Multivariate Statistical Anal-
ysis, Wiley, New York, 1984.

(This is especially recommendable for Multiple Correspondence Analysis.)
E. Malinvaud and J.C. Deville, “Data analysis in official socio—economic

statistics”, Journal of the Royal Statistical Society Series A 146, 335-361,
1983.

(The use of multivariate statistics on large data collections is discussed.)

. S.S. Schifman, M.L. Reynolds and F.L. Young, Introduction to Multidi-

mensional Scaling, Academic Press, New York, 1981.

. W.S. Torgerson, Theory and Methods of Scaling, Wiley, New York, 1958.

(Although old, this book is very readable on the subject of non-metric
multidimensional scaling.)

M. Volle, Analyse des Données, Economica, Paris, 1981.

(Correspondence Analysis is dealt with in a practical fashion.)



Chapter 6

Case Study 1: IUE Low
Dispersion Spectra

6.1 Presentation

The aim of this case study is to illustrate the use of various methods introduced
in previous chapters on a specific, real-life example. The emphasis here will be
more on the statistical aspects of the problem than on the astrophysical details,
which the interested reader can find in the specialized papers referenced and
more particularly in Heck et al. (1984b, 1986a).

6.2 The IUE Satellite and its Data

The International Ultraviolet Explorer (IUE) satellite was launched on 26 Jan-
uary 1978 to collect spectra in the ultraviolet wavelength range (UV) for all
types of celestial objects. To date, IUE can be qualified as the most successful
and the most productive astronomical satellite. It is also the first “space tele-
scope” to be exploited in the same way as a “mission” ground observatory, with
visiting astronomers participating in real time in the decision loop for program-
ming the observational sequences and collecting data during the observing shifts
allocated to their approved programmes. At the time of writing, the satellite is
still active 24 hours per day in geosynchronous orbit at about 40,000 km from
the Earth. Its construction, launch and utilisation resulted from a joint ven-
ture by three space agencies: NASA (USA), SERC (UK) and ESA (Europe).
It is exploited from two ground stations: one for 16 hours per day at NASA
Goddard Space Flight Center (Greenbelt, Maryland, USA), and the other for
the remaining 8 hours per day at the ESA VILSPA Satellite Tracking Station
(Villafranca del Castillo, near Madrid, Spain).

IUE scientific instrumentation essentially consists of a Ritchey—Chrétien 45
cm telescope with two spectrographs: one working in the 1150 — 2000 A range,
and the other in the 1900 —3200 A range. Each spectrograph can record spectra
in a low-resolution mode (~ 7 A) and in a high-resolution mode (~ 0.1 A). For
more details on IUE, see Boggess et al. (1978a, 1978b), and see also the IUE
Memorial Book (Kondo et al., 1986) containing among others a chapter on UV
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Figure 6.1: The International Ultraviolet Explorer (IUE).

spectral classification (Heck, 1986).

Only low—dispersion spectra will be considered in the following, and by spec-
trum we shall understand 410 flux values at 5 A steps (just below the actual
resolution) covering the whole IUE wavelength range (1150 — 3200 A), obtained
by merging the outputs of both spectrographs.

6.3 The Astrophysical Context

From earlier work on data collected by the S2/68 experiment on board the TD1
satellite (called “TD1” in the following), it had been shown that stars which
were classified as spectrally normal in the visible range (/~ 3500 — 4800 A) did
not necessarily behave normally in the ultraviolet range and vice versa (see
Cucchiaro et al., 1978 and the references quoted therein). Consequently, MK
spectral classifications which are defined in the visible range cannot simply be
extrapolated to the UV.

IUE covers a larger wavelength range than TD1 (1150 — 3200 A as against
1250 — 2550 A) and it has, even at low dispersion, a resolution about five times
better than TD1 (7 A as against 36 A). Moreover IUE has observed a much
broader range of stellar types than TD1 and has also reached significantly fainter
magnitudes. Therefore a UV stellar classification programme was initiated in
order to define, from IUE low—dispersion spectra, smooth UV spectral sequences.
The latter were to describe stellar behaviour in the UV while staying as far as
possible in accordance with the MK scheme in the visible.

The first volume of an IUE Low—-Dispersion Spectra Reference Atlas (called
the Atlas in the following) has already been produced (Heck et al., 1984a),
together with reference sequences and standard stars, and a second volume de-
voted to peculiar groups is in preparation (see Heck et al., 1986b). The consid-
erable classification work undertaken follows a classical morphological approach
(Jaschek and Jaschek, 1984) and it essentially confirms that there is no one-
to—one correspondence between the UV and visible ranges.

Let us recall here that the IUE spectral classification consists of a symbol ex-
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pressing membership in a luminosity class (e.g. s+ defining supergiant, bright),
followed by spectral-type symbols linked to the effective temperature of the star
(e.g. BS).

Stellar spectral classifications are more than just taxonomical exercises
aimed at labelling and categorizing stars by comparison with standards. They
are used for describing fundamental physical parameters in the outer atmo-
spheres of the stars, for discriminating peculiar objects, and for other subsidiary
applications like distance determinations, interstellar extinction and population
synthesis studies.

It is important to bear in mind that the classification systems are built
independently of stellar physics in the sense that they are defined completely
from spectral features, selected in standard stars, in a given wavelength range
(see, e.g., Jaschek, 1979 and Morgan, 1984). If the schemes are based on a
sufficiently large number of objects, then these classification schemes cannot be
other than intimately linked with stellar physics. Such classification schemes
will not necessarily relate to the same stellar layers, if they refer to different
wavelength ranges. Consequently, the discrepancies found between the MK
system and the UV framework are not surprising.

This also implies that the only way to confirm the correctness of the UV
classification framework introduced in the Atlas is to remain in the same wave-
length range. A statistical approach would moreover be independent of any a
priori bias arising from existing schemes, either in the visible or in the ultraviolet
ranges. An additional advantage of statistical methodology lies in the fact that
it is able to work at will in a multidimensional parameter space, while classical
morphological classifications rarely go beyond two dimensions.

The aim of this study is thus to apply multidimensional statistical algorithms
to variables expressing as objectively as possible the information contained in
the continuum and the spectral features of low—dispersion IUE stellar spectra.
Several objectives may be pursued, but the most important will be the arrange-
ment of the corresponding stars into groups, whose homogeneity, in terms of the
classification symbolism introduced in the Atlas, should reflect the accuracy of
this IUE UV classification scheme.

6.4 Selection of the Sample

Although much of the following is applicable to all types of spectra, consid-
eration is restricted here to stars that are normal in the UV. Thus, for this
application, we retained 264 IUE low—dispersion spectra which were technically
good in the sense that images of poor quality (i.e. strongly underexposed or
affected by saturation, microphonic noise or other defects) were discarded.

TD1 data had the advantage of resulting from a survey and of representing
a magnitude—limited unbiased sample of bright stars, whereas IUE is pointed
only at preselected targets from accepted proposals. It thereby provides a bi-
ased sample, mainly in favour of early (or hotter) spectral types (typical UV
emitters). This is illustrated in Table 6.1, which gives the distribution of the
sample stars for their UV spectral types (effective temperature decreasing from
hotter O to cooler K stars) and luminosity classes (luminosity decreasing from
bright supergiants, s+, to dwarfs, d).

Since we intend to compare flux values of stars with (sometimes very) dif-



178  CHAPTER 6. CASE STUDY 1: IUE LOW DISPERSION SPECTRA

O B A F G K
s+ | 3 16
S 4 4 9 5 2
s— | 2 9
g+ |4 6 2
g 9 23 4 5
d+ | 5 13 3
d |20 60 31 17 5 2

Table 6.1: UV spectral distribution of the stars sampled.

ferent apparent magnitudes, it is necessary to normalize the flux scales. This
was done by dividing each spectrum by the average flux value over the whole
interval, which was equivalent to normalizing the integrated flux over the whole
IUE range.

6.5 Definition of the Variables

Some of the algorithms will be applied below to the original 264 x 410 original
flux values, but the 410 flux values will also be condensed into a smaller number
of variables expressing as exhaustively as possible the information contained in
the spectra. Clearly, the smaller the number of variables, the less computation
time is required in the case of some of the multivariate data analysis algorithms.
Essentially two types of information can be extracted from a spectrum: on
the one hand, the general shape of the continuum which will be described by an
asymmetry coefficient; and on the other hand, the various data relative to the
individual spectral lines. In total, 60 line intensity values were used.

6.5.1 The Continuum Asymmetry Coefficient

To define the continuum asymmetry coefficient, the spectra were first smoothed
by binning the fluxes into 31 boxes of 65 A. These correspond to 403 intervals
of the initial 5 A steps, and cover the interval 1170 — 3185 A (the fractions of
spectra dropped at each end are insignificant). Such figures seemed to be an
excellent compromise between too many bins (with too much influence from the
spectral lines) and too few (with consequent alteration of the general continuum
shape). In each bin, the flux was represented by the median which turned out to
be more suitable than the mean, the latter being too much affected by possible
lines in the bin.
The following asymmetry coefficient was then calculated:

S = (A1 — A) /(A1 + A)

where A; and A, are the areas illustrated in Figure 6.2 and correspond respec-
tively to the ranges 1430 — 1885 A and 2730 — 3185 A. The first interval was
selected as the largest feasible interval between possible parasitic effects arising
in the spectra from:

e on the shortwavelength side, either a La geocoronal emission or strong
stellar absorption;
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Figure 6.2: Illustration of terms in the asymmetry coefficient S (see text).
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e on the longwavelength side, a 2200 A interstellar absorption bump.

There were seven 65 A bins between these two features. Area A, was taken
with the same length at the longwavelength end of the spectrum, and as far as
possible from the 2200 A bump. The positions and sizes of A; and A, could
be defined differently, but the choices made here were fully satisfactory for our
purposes.

It is easy to see that S varies from 1 (the extreme case of hot stars — all the
flux at the shortwavelength end) to —1 (the extreme case of cool stars — all the
flux at the longwavelength end). Both flat and balanced spectra give S = 0.

The asymmetry coefficient appeared immediately to be a powerful discrim-
inating parameter for normal stars. However, the reddening turned out to be
more troublesome than expected and it had to be taken into account, even out-
side the zone that we avoided. Actually, a simple glance at Seaton’s (1979)
interstellar—extinction curve (his Figure 1) makes it clear that the absorption is
as strong around 1350 A as around 2200 A. This means that a hot—star spec-
trum (clearly asymmetric with S close to 1 when unreddened) becomes fairly
symmetric (with S close to 0) when reddened (see Figure 6.3).

6.5.2 The Reddening Effect

In order to correct the asymmetry coefficient for the reddening effect, we intro-
duced a new parameter R (see Figure 6.2), which we called the reddening depth
and defined as:

R = (Fiso0 + F2530)/2 — Fa210

(where F) represents the flux at wavelength \) giving a rough measurement of
the amplitude of the 2200 A bump.

We then dereddened a number of spectra from our sample (chosen at vari-
ous degrees of reddening) by using Seaton’s (1979) absorption law and compared
the pairs (reddened—dereddened) in the normalized representation. As demon-
strated by Figure 6.3, the reddening increases area A, compared to area Aj,
which stays roughly at the same level in most cases.

A rather simple functional relationship could be empirically established be-
tween the reddening depth R and the difference in area As due to the reddening:

In(4; — A}) =3.0lnR — 0.5

where As corresponds to the reddened spectrum and A} to the unreddened one.
For R = 0, we have of course A» = A}. Quite naturally, the coefficients of this
relationship could be refined with a bigger sample.

Thus, when a positive reddening is detected, area A, has to be decreased by
(Ay — A}) before calculating the asymmetry coefficient S.

It should be emphasized here that, although only one reddening law has
been used for illustrating and for determining a rough empirical relationship,
this does not imply that we consider it of universal application in the UV. It is
however sufficient within the overall accuracy of this case study, whose results
are mainly qualitative.
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Figure 6.3: Illustration of the reddening effect on a normalized spectrum.
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6.6 Spectral Features

6.6.1 Generalities

We decided to concentrate on spectral features which are classically used for
spectral classification, i.e. emission and/or absorption lines which can play a
role with different degrees of sophistication: firstly, by their presence or absence
only; secondly, by their comparative intensity; and finally, by their intensity
weighted in an appropriate way.

In any case, an objective approach should begin by a systematic search for
these lines. As our sample consists only of normal stars, we consider in the
following only absorption lines but, mutatis mutandis, similar considerations
could also apply to emission features.

6.6.2 Objective Detection of the Spectral Lines

We looked for the most frequent minima in the spectra of our sample. Various
morphological tests were applied to the values of each original flux vector by
moving sets of 3 to 7 points. Then a histogram was constructed to indicate
the frequency of the minima detected over the whole spectral range and over
the whole sample. The test which appeared to be the most adequate and the
most efficient (in terms of the best compromise between line detection and
insensitivity to noise) is reproduced in Figure 6.4. In other terms, we considered
as a potential line wavelength, that corresponding to the flux component n such
that:
Fn72 > anl > Fn < Fn+1

or such that
F, >F,< Fn+1 < Fn+2

where Fj represents the flux at the i’ component. Such an asymmetry in the
tests permits the detection of lines in the wings of larger nearby ones.

We decided to select the most frequent lines because we were dealing with
a sample of normal stars. With peculiar stars, the criterion would be different
since one given line appearing only in a few stars could be a discriminator for
that particular group. The approximate wavelength (5 A precision) of the 60
most frequent lines are given in Table 6.2. They include all the lines used in the
morphological classification given in the Atlas.

Additional lines could have been used, but 60 turned out to be a good figure
for this study. The line selection was in principle done above the noise level
corresponding to a purely random process. However, the minima correspond-
ing to the IUE réseau marks were ignored, as were those resulting from, on
the one hand, the junction of the “long-” and “shortwavelength” parts of the
spectra and, on the other hand, from the camera sensitivity drops towards the
extremities of their respective spectral ranges.

6.6.3 Line Intensities

Line intensities were calculated (from normalized flux values) as the differences
between the minima and associated continua smoothed at the median values
over 13 components centred on each line.
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Figure 6.4: Test used for objectively detecting potential lines in the spectra.
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1175% 1565 2065 2665*
1215% 1610* 2100 2695
1230  1625% 2145 2720
1260* 1640* 2300 2750*
1275 1655 2345 2800*
1300% 1670 2365 2835
1330* 1720* 2390 2855*
1365* 1765 2410 2875
1395* 1810 2440 2930
1415  1850* 2475 2990
1430* 1895*% 2490 3025
1455*%  1925% 2525 3065
1470* 1960* 2540 3105
1535 1995 2610 3120
1550% 2040 2635 3160

Asterisks indicate lines used for classification
in the IUE Normal Stars Atlas (Heck et al., 1984a).

Table 6.2: Bin wavelengths corresponding to the 60 most frequent lines in the
spectral sample at hand.

Allowing for the usual difficulties of drawing a spectral continuum, we believe
this rough systematic procedure does not introduce additional imprecision in the
whole approach and does not modify substantially the essentially qualitative
results of the study.

6.6.4 Weighting Line Intensities

In order to enhance the importance of lines in the shortwavelength range for
hot stars (where the signal is most significant), and similarly of lines in the
longwavelength range for cool stars, the line intensities were weighted with the
“variable Procrustean bed” (VPB) technique (introduced in Heck et al., 1984b)
through the formula

D} = Dy(1+ S — 2S(L; — 1155)/2045)

where D; is the unweighted depth of the i‘” line, S is the asymmetry coefficient,
and L; is the wavelength (A) of the i** line (i = 1 to 60).

As illustrated in Figure 6.5, this corresponds, for an extreme hot star (curve
H), to multiplying the shortwavelength—side line intensities by 2 and the longwavelength—
side ones by 0. Those in between have a weight progressively decreasing from
2 to 0 as the wavelength increases. The situation is reversed for an extreme
cool star (curve C), and all intermediate cases are weighted intermediately (in
the sense of the arrows) in a similar way. The neutral case (all line intensities
weighted by 1) corresponds to S = 0.

Here again, in a statistical parody of the deplorable mania of the Greek
mythological robber Procrustes, the line intensities were forced to comply with
the asymmetry coefficient (Procrustes’ bed) which is variable with the star at
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Curve H corresponds to the extreme case of hot stars (S = 1),
and curve C to the extreme case of cool stars (S = -1).

The horizontal line corresponds to S = O.

Figure 6.5: Weighting of the line intensities by the asymmetry coefficient
through the Variable Procrustean Bed technique.

hand. In other words, while a statistical variable generally receives the same
weight for all individuals of a sample, in this application the weight is a function
of the individuals themselves.

Finally it may be noted that the number of variables used could be even
more reduced by looking at correlations between those defined, and rejecting
redundant variables from consideration.

6.7 Multivariate Analyses
We are given a 264 x 403 table, consisting of 264 spectra each measured on

403 flux values (slightly reduced from the original 410 flux values, by dropping
insignificant extremities of the spectra: cf. section 6.5.1 above). We also have a
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264 x 61 table, the parameters being the asymmetry coefficient and 60 weighted
line intensity values. As a general rule, as analyses are carried out, it may be
interesting or even necessary to discard anomalous spectra or confusing param-
eters. It may similarly be of interest to redo the initial coding of the data, to
make use of data transformations, and so on.

6.7.1 Principal Components Analysis

A Principal Components Analysis (PCA) condenses the dimensionality of a
parameter space. It may be used as a data “cleaning” stage, prior to a clustering.
In the case of the 264 x 403 table of flux values, the 264 spectra were centred:
i.e. the PCA was carried out on a 403 x 403 covariance matrix. The percentage
variance explained by the first axis was 77.5%, by the first plane 89%, and by the
best fitting 3—dimensional subspace 94%. The marked linearity of the data was
identified as being temperature-related, but also had some luminosity effects.
Greater negativity on the first axis was essentially associated with cooler stars
and, for a given temperature, more luminous stars.

The PCA of the 264 x 61 table offers computational advantages, and because
of the carefully selected parameters may be of greater interpretative value. The
spectra were again centred (i.e. leading to a PCA of the 61 x 61 covariance ma-
trix; an alternative of a PCA of the correlation matrix was not undertaken since
it would destroy the effects of the VPB weighting procedure — cf. section 6.6.4
above). The following percentages of variance explained by the seven successive
principal components were obtained: 49, 18, 9, 5, 3.5, 2.5, and 1.5. Hence the
best fitting seven—dimensional subspace accounts for 88% of the variance of the
264 spectra in the 61 parameter space.

Regarding interpretation of the principal components, the first axis was
strongly correlated with the L« line (stellar absorption), followed by the asym-
metry coefficient, and by other lines that were all indicators of spectral type.
Thus this first axis was essentially an effective temperature discriminator.

The second axis was most correlated with a line that had not been retained
for the Atlas morphological classification because it was located close to other
important lines. The three following ones discriminate mainly the effective
temperature. The fifth line was not selected for the Atlas either.

The third and fourth axes were essentially discriminators of effective temper-
ature among the cool types, while the fifth axis discriminated luminosity among
hot stars.

6.7.2 Cluster Analysis

Among the cluster analyses carried out was a clustering on the seven principal
components resulting from the PCA of the 264 x 61 matrix. Hierarchical clus-
tering was used because, not knowing the inherent number of clusters, a range of
groups could be studied (the 30, 40, and 50 group solutions, in particular, were
examined). The minimum variance criterion was used for the desired objective
of determining synoptic groups.

The results are shown in Table 6.3. The first column is the star identifier,
the second is the IUE spectral classification (this symbolism is used in the Atlas)

and the third, fourth and fifth columns are respectively the 30, 40 and 50 group
solutions.
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HD 8890 s F8 1 1 1
HD 79447 d+B3 2 2 2
HD 36824 d B2.5 2 2 2
HD 192685 d B2.5 2 2 2
HD 32630 d B3 2 2 2
HD 37674 d B3 2 2 2
HD 168905 d B2.5 2 2 2
HD 120315 d B3 2 2 2
HD 64802 d B2.5 2 2 2
HD 4142 d B4 2 2 2
HD 829 d+B3 2 2 2
HD 100600 d B2.5 2 2 2
HD 42690 d B2 2 2 2
HD 36629 d B2 2 2 2
HD 190993 d B2.5 2 2 2
HD 37776 d B2 2 2 2
HD 61831 d B2.5 2 2 2
HD 37129 d+B2.5 2 2 2
HD 86440 s-B5 3 3 3
HD 53138 s+B3 3 3 3
HD 2905 s+B1 3 3 3
HD 164353 s-B5 3 3 3
HD 23408 g B6 3 3 3
HD 83183 g+B6 3 3 3
HD 51309 g+B3 3 3 3
HD 46769 d B6 3 3 3
CPD -72 1184 g BO 3 3 49
HD 34078 d+09.5 3 3 49
HD 152233 g 05 4 4 4
HD 93403 g 05 4 4 4
HD 210839 s 05 4 4 4
HD 152248 s 07 4 4 4
HD 46223 d 04 4 4 4
HD 46150 d 05 4 4 4
HD 47129 g+07 4 4 4
HD 162978 g+07 4 4 45
HD 48099 d 07 4 4 45
HD 165052 d 07 4 4 45
HD 213558 d Al 5 5 5
HD 87737 s AO 5 5 b
HD 41695 d Al 5 5 5
HD 156208 g Al 5 5 b
HD 86986 d Al 5 5 5
HD 29646 d Al 5 5 5
HD 20346 g:A2 5 5 b
HD 80081 d A2 5 5 5
HD 166205 d A2 5 5 b
HD 104035 s A2 5 5 5
HD 177724 d A0 5 5 b
HD 48250 d A2 5 5 5
HD 111775 d+A0 5 5 5
HD 58142 d+A1 5 5 b
HD 60778 d A2 5 5 5
HD 149212 g B9 5 5 b
HD 137422 g+A2 5 5 5
HD 62832 d Al 5 5 b
HD 11031 d A2 5 5 5
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HD 167838 s+B5 5 5 b
HD 103287 d A0 5 5 5
HD 95418 d Al 5 5 5
HD 27962 d A2 5 5 5
HD 9132 d Al 5 5 5
HD 12301 s-B8 5 5 5
HD 166937 s+B8 5 5 5
HD 53367 g BO 5 5 43
HD 198478 s+B3 5 5 43
HD 77581 s+B0.5 5 5 43
HD 190603 s B2 5 5 43
HD 41117 s+B2 5 5 43
HD 199216 s-B2 5 5 43
HD 148379 s+B2 5 5 43
HD 206165 s-B2 5 5 43
HD 163181 s Bl 5 5 B0
HD 29335 d B6 6 6 6
HD 147394 d B5 6 6 6
HD 210424 d B7 6 6 6
HD 23480 d B6 6 6 6
HD 25340 d B5 6 6 6
HD 22928 g B5 6 6 6
HD 197392 g B8 6 6 6
HD 21071 d B7 6 6 6
HD 90994 d B6 6 6 6
HD 162374 d B6 6 6 6
HD 199081 (example) 6 6 6
HD 31512 d B6 6 6 6
HD 37903 d B1.5 6 6 41
HD 37367 d+B2.5 6 6 41
HD 27396 d B4 6 6 41
HD 23060 d B3 6 6 41
HD 4727 d+B4 6 6 41
HD 34759 d B4 6 6 41
HD 83754 d B5 6 6 41
HD 52942 d B1.5 6 6 41
HD 142983 g B4 6 6 47
HD 50846 g+B5 6 6 47
HD 47755 d B3 6 6 47
HD 60753 d B3 6 6 47
HD 40136 d F2 7 7 7
HD 128167 d F3 7 7 7
HD 20902 s Fb 7 7 7
HD 173667 d F6 7 7 7
HD 61421 d F5 7 7 7
HD 77370 d F4 7 7 7
HD 113139 d F2 7 7 7
HD 99028 g F3 7 7 7
HD 152667 s+B0.5 8 8 8
HD 47240 s+B1 8 8 8
HD 24398 s-B1 8 8 8
BD -9 4395 s B1.5 8 8 8
HD 47432 s+09 8 36 36
HD 122879 s+B0 8 36 36
HD 37043 d+09 9 9 9
HD 47839 d 08 9 9 9
HD 13268 g 08 10 10 10
HD 188209 s-09.5 10 10 10
HD 30614 s+09 10 10 10
BD +60 497 d 07 10 10 10
HD 48329 s G8 11 11 11
HD 16901 s GO 11 39 39
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HD 86360 d+B9 17 17 17
HD 223778 d K3 18 18 18
HD 36512 d BO 19 19 19
HD 214680 d 09 19 19 19
HD 34816 d BO.5 19 19 19
HD 55857 d BO.5 19 19 19
HD 38666 d 09 19 19 19
HD 57682 d 09.5 19 19 19
HD 74273 d B1.5 19 34 34
HD 144470 d Bl 19 34 34
HD 212571 d Bl 19 34 34
HD 46056 d 08 20 20 20
HD 46149 d+08 20 20 20
HD 52266 g 09 20 20 20
HD 46202 d+09 20 20 20
HD 53974 g BO.5 20 20 20
HD 209481 g 09 20 20 20
HD 58946 d F2 21 21 21
HD 59612 s A5 21 21 21
HD 36673 s FO 21 21 21
HD 182640 d:F2 21 21 21
HD 27290 d F1 21 21 21
HD 90589 d F3 21 21 21
HD 65456 d A5 21 21 21
HD 27176 d FO 21 21 21
HD 147547 g FO 21 21 21
HD 161471 s F3 21 21 21
HD 12311 g FO 21 21 21
HD 206901 d F4 21 31 31
HD 89025 g F2 21 31 31
HD 202444 d:F3 21 31 31
HD 78362 g F3 21 31 31
HD 127739 d F3 21 31 31
HD 210221 s A3 21 33 33
HD 90772 s A5 21 33 33
HD 148743 s A7 21 33 33
HD 128620 d:G 22 22 22
HD 6582 d G 22 32 32
HDE 326330 g Bl: 23 23 23
HD 64760 s-B0.5 23 23 23
HD 91316 s-B1 23 23 23
HD 123008 s+09 23 23 23
HD 152249 s-09 23 37 37
HD 152247 g+09 23 37 37
HD 54439 d:B1.5 24 24 24
HD 52721 d B2: 24 24 24
HD 200310 d Bl 24 24 24
HD 154445 d Bl 24 24 24
HD 54306 d Bl 24 24 24
HD 147933 d B1.5 24 24 24
HD 207330 g B2.5 24 38 38
HD 92741 g+B1 24 38 38
HD 149881 g:B0.5 24 38 38
HD 150898 g+B0: 24 38 38
HD 165024 g+B1 24 38 38
HD 51283 g B2 24 38 38
HD 219188 g BO.5 24 38 38
HD 173502 g Bl 24 38 38
HD 167756 s-B0.5 24 38 38
HD 164794 d 03 256 25 25
HD 93205 d 03 25 25 25

HD 93204 d:03 256 25 25
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HD 93250 d 03 25 25 46
CPD-59 2600 d:0 25 25 46
HDE 303308 d 03 25 25 46
HD 93130 g 05 25 25 46
BD +60 594 g:08 26 26 26
BD +63 1964 g BO 26 26 26
HD 40893 g 09.5 26 26 26
CPD -41 7711 d Bl 26 40 40
HD 164402 s-BO 27 27 27
HD 57061 g+09.5 27 27 27
HD 167264 s+B0 27 27 27
HD 10307 d G1.5 28 28 28
HD 102870 d F9 28 28 28
HD 20630 d G5 28 28 28
BD +60 2522 s 07 29 29 29
HD 109387 d+B7 30 30 30
HD 23302 g B6 30 30 30
HD 87901 d B7 30 30 30
HD 183914 d B8 30 30 30
HD 47054 d B8 30 30 30
HD 23324 d B8 30 30 30

Table 6.3: Star identifiers, IUE spectral classification, and 30—, 40— and 50—
cluster solutions.

Note that the group sequence numbers used in the final three columns of
Table 6.3 have no inherent meaning. Sorting of star identifiers was carried out
to make the grouping clear, but in other respects has no inherent significance.
The hierarchical structure between the 30, 40 and 50 cluster solutions (produced
by the one algorithm) can be seen. It is inherent in the clustering algorithm
used that the 50-group solution (the rightmost column of Table 6.3) is both a
finer grouping and gives a more homogenous set of clusters than the 40 and 30
group solutions. The number of clusters looked at (i.e. 30, 40 and 50) were
selected as reasonable figures, given the number of stars per group and the
spectral classification (shown in Column 2 of Table 6.3, and now to be used for
comparison).

Relative to spectral classification (Column 2), as the number of groups in-
creases from 30 to 50, bigger groups are split into smaller more homogenous
groups. This homogeneity is limited, firstly, by the relatively small size of the
sample at hand (i.e. 264 stars) compared to the number of possible spectral
classifications; and, secondly, by the underlying continuous physical variables
(viz. effective temperature and intrinsic luminosity).

The overall approach developed here could also be used to predict UV spec-
tral classification by assimilation. Stars with unknown UV spectral classification
could be introduced into the general sample and the procedure applied to the
whole population. The predicted classification could be taken as the spectral
mode of the group to which the star has been assigned by the algorithm. The
precision obtained would then be of the order of the ranges in spectral type and
luminosity class of these groups.

As an example, star HD 199081 (on page 186) is in group number 6. The
range here is d — g (dwarf — giant) in luminosity, and B5-B7 in spectral type. The
mode is d B6. Hence in the absence of further information, we would assign this
star to spectral class d B6, with a tolerance indicated by the above-mentioned
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interval.

6.7.3 Multiple Discriminant Analysis

Cluster Analysis allowed good discrimination between spectral types, but was
somewhat less effective in discriminating between luminosity classes alone. Hence,
Multiple Discriminant Analysis was used to assess the discrimination between
these classes. The following luminosity classes were used: s (supergiant), g
(giant) and d (dwarf) (the star discussed at the end of section 6.7.2, Cluster
Analysis, being assigned to d).

It was found that the three discriminant factors obtained allowed pairwise
discrimination between these classes. Figure 6.6 shows a plot of d versus s in the
plane defined by discriminant factors 1 and 2; while Figure 6.7 shows the plot
obtained of discriminant factors 1 and 3 where the discrimination between g and
s can be seen. Unclear cases lie close to separating lines, and unknown cases
may be decided upon by investigating the relative position in the discriminant
factor space.
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Figure 6.6: Dwarf and supergiant stars in the plane of discriminant factors 1

and 2.
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Chapter 7

Case Study 2: Classification
of GRBs

7.1 Presentation

As very few gamma-ray burst (GRB) sources have astronomical counterparts at
other wavebands, empirical studies of GRBs have been largely restricted to the
analysis of their gamma ray properties: bulk properties such as fluence and spec-
tral hardness, and evolution of these properties within a burst event (Fishman
& Meegan 1995). While bursts exhibit a vast range of complex temporal be-
haviors, their bulk properties appear simpler and amenable to straight-forward
statistical analyses. Studies fall into two categories: examination whether GRB
bulk properties comprise a homogeneous population or are divided into distinct
classes; and search for relationships between bulk properties. Both types of
study may lead to astrophysical insight, just as the distinction between main
sequence stars and red giants and the measurement of a luminosity-mass rela-
tion along the main sequence assisted the development of stellar astrophysics
early in the century.

The most widely accepted taxonomy of GRBs is the division between short-
hard and long-soft bursts proposed by Dezelay et al. (1992) and Kouveliotou
et al. (1993, henceforth K93). K93 noticed a bimodality in the burst duration
variable Tyg (time within which 90% of the flux arrived), suggesting the presence
of two distinct types of bursts separated at Tgo ~ 2 sec. The short bursts
have systematically harder gamma-ray spectra than longer bursts. The two
groups seemed indistinguishable in most other bulk properties, although the
larger group of long-soft bursts may have a subclass with a different fluence
distribution (i.e., different < V/V,,, >; Katz & Canel 1996) and the groups may
have different Galactic latitude distributions (Belli 1997). Other researchers
point to small groups of bursts with distinctive properties such as the soft-
gamma repeaters (Norris et al. 1991), two possible classes with differing short-
timescale variability (Lamb, Graziani & Smith 1993), fast-rise exponential-decay
bursts (Bhat et al. 1994), and two types of bursts with different ratios of total
fluence and >300 keV fluence (Pendleton et al. 1997).

A variety of relationships between burst properties have also been reported.
Norris et al. (1995) find an anti-correlation between Tyg (calculated after wavelet
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thresholding) and peak intensity, consistent with a cosmological time dilation.
However, a positive correlation between Ty and total fluence is also seen which
does not agree with the simplest cosmological interpretation (Lee & Petrosian
1997). Additional reported relationships include: Ty correlated with peak
heights (Lestrade 1994), peak energy correlated with peak flux (Mallozzi et
al. 1995), and peak duration anticorrelated with gamma-ray energy (Fenimore
et al. 1995).

Most of these studies suffer from a failure to treat all of the bulk property
variables in an unbiased and quantitative way. Astronomers typically examine
univariate or bivariate distributions, sometimes constructing composite vari-
ables (such as hardness ratios) with pre-determined relationships to include
one or two additional variables. But it is quite possible that the complex as-
trophysics producing GRBs will not manifest itself in simple bivariate plots,
just as the division between short-hard and long-soft bursts is not evident in
spectral variables alone (Pendleton et al. 1994). GRB catalogs, like most mul-
tiwavelength astronomical catalogs, are multivariate databases and should be
treated with multivariate statistical methods that can objectively and effec-
tively uncover structure involving many variables (Feigelson & Babu 1997).
Two previous studies take a fully multivariate approach to understanding GRB
bulk properties. Baumgart (1994) constructs a neural network taxonomy of 99
GRBs from the PVO satellite using 26 variables representing both bulk burst
properties and detailed temporal characteristics (e.g. number of peaks, fractal
dimension, wavelet transform crossings) and finds two or three distinct GRB
classes. Bagoly et al. (1997) perform principal components and factor analyses
of nine bulk property variables using 625 GRBs from the BATSE 3B catalog.
They find that that the relationships in the database are determined principally
by only three variables: an appropriately weighted fluence, a weighted burst
duration, and (to a lesser extent) flux in the highest energy bin.

We note, however, that it can be dangerous to look for correlations prior
to classification (or establishing the homogeneity) of the population. While
the anticorrelation between hardness ratio and burst duration seen in full sam-
ples (K93) may be the manifestation of a single astrophysical process, it may
alternatively reflect differences between distinct processes. The latter possibil-
ity is suggested by a reported hardness-duration positive correlation within the
long-soft class of bursts (Dezalay et al. 1996; Horack & Hakkila 1997). Most
multivariate analyses thus begin with a study of homogeneity and classification,
and then investigate the variance-covariance structure (i.e. correlations) within
each class.

This paper describes a multivariate analysis of GRBs from the Third BATSE
Catalog (Meegan et al. 1996). After defining the sample (§2), we start with a
simple statistical description of the variables and their bivariate relationships
for entire dataset (§3). We then seek distinct types of clusters in two ways.
First, a standard nonparametric agglomerative hierarchical clustering analysis
is performed (§4) which reveals three distinct. The statistical significance of the
third cluster is validated, under Gaussian assumptions, with MANOVA tests.
Second, a parametric maximum likelihood clustering procedure is adopted which
reveals the same three groups and confirms them at high statistical significance
(85). The variance-covariance structure of each group is then examined (§6).
Results are assimilated in the discussion (§7).

Throughout the paper, we discuss our mathematical techniques to help the
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reader understand the complexities of multivariate analysis. From the vast lit-
erature in this subject, we recommend the following monographs for interested
readers: Johnson & Wichern (1992) and Jobson (1992) for overviews of ap-
plied multivariate analysis; Hartigan (1975), Jain & Dubes (1988) and Kaufman
& Rousseeuw (1990) for multivariate clustering algorithms; Murtagh & Heck
(1987) and, more briefly, Feigelson & Babu (1996) for multivariate methodol-
ogy in astronomy.

7.2 The GRB Sample and Statistical Software

Our sample is drawn from the Third Catalog of the Burst and Transient Source
Ezperiment (BATSE) on board the Compton Gamma Ray Observatory. This
3B catalog has 1122 GRBs detected by BATSE between 1991 April 19 and
1994 September 19. The catalog is presented and fully described by Mee-
gan et al. (1996). Our database was extracted from the on-line database
www.batse.msfc.nasa.gov/data/grb/catalog in May 1996, which provides many
properties of each burst. There are roughly eleven variables of potential astro-
physical interest: two measures of location in Galactic coordinates, [ and b; two
measures of burst durations, the times within which 50% (T50) and 90% (T50)
of the flux arrives; three peak fluxes Pgy, Pose and Pjga4 measured in 64 ms,
256 ms and 1024 ms bins respectively; and four time-integrated fluences F; — Fy
in the 0-50 keV, 50-100 keV, 100-300 keV and > 300 keV spectral channels re-
spectively. Researchers commonly consider three composite variables: the total
fluence, Fr = F| + F> + F3 + F, and two measures of spectral hardness derived
from the ratios of channel ﬂuences, H32 = F3/F2 and H321 = F3/(F1 + FQ)
Due to the limitations of available multivariate statistical techniques, we ignore
other variables of potential relevance including the heteroscedastic measurement
errors of each quantity and truncation values associated with BATSE triggering
operations.

Of the 1122 listed bursts, 807 have data on all the variables described above.
Ten bursts listed with zero fluences were eliminated. Our sample thus has 797
BATSE GRBs. For some analyses, we also used a subset of 644 bursts with
‘debiased’ durations, Tgh. Here the durations are modified to account for the
effect that brighter bursts will have signal above the noise for longer periods than
fainter bursts with the same time profiles (J. Norris, private communication).

Statistical analyses in §§3, 4 and 6 were conducted within the Statistical
Analysis System SAS/STAT!, a very large and widespread commercial statisti-
cal software package (SAS Institute Inc. 1989). SAS/STAT procedures CLUS-
TER, GLM, PRINCOMP and VARCLUS were used. The analysis in §5 was
performed with the MCLUST software (Banfield & Raftery 1993; Fraley 1998).
A stand-alone FORTRAN version for Gaussian mixtures is available on-line in
the StatLib archive at http://lib.stat.cmu.edu/general/mclust, and versions with
interface to the S statistical package are available at http://lib.stat.cmu.edu/S
for both Gaussian and Poisson mixtures. For multivariate data visualization, we
used the XGobi (Swayne, Cook & Buja 1991) program, available from StatLib
at http://lib.stat.cmu.edu/general/XGobi. Hypertext links to a variety of pub-
lic domain software for multivariate analysis, classification and visualization is
available at the Penn State StatCodes Web site, http://www.astro.psu.edu/statcodes.

LSAS/STAT is a registered trademark of the SAS Institute Inc.
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7.3 Statistical Properties of the Entire Sample

We are faced with a multivariate database of 797 objects and 15 variables (11
variables from the catalog, 3 composite variables, and T¢). Two initial prob-
lems are frequently faced in analyses of multivariate databases. First, variables
with incompatible units and ranges must be compared. Units can be removed
by normalization (e.g. replacing Fy by Fi/F;.:), standardization (e.g. replacing
F) by Fi/op, where o is the sample standard deviation), or taking logrithms.
Second, the dimensionality of the problem should be reduced, as many of the
variables are closely interrelated either by construction or by astronomical cir-
cumstance. Although there are no mathematical rules regulating reduction of
dimensionality, it can usefully be guided by a correlation matrix showing bi-
variate relationships and a principal components analysis showing multivariate
relationships that are mainly responsible for structured variance in the data.
Scientific reasoning can also be used to eliminate consideration of variables. We
conducted a preliminary examination of data representations, correlation matri-
ces and bivariate plots, and principal components analyses to facilitate choice of
variables. When no mathematical preference arose, we selected variables most
commonly used by previous researchers to facilitate comparison of results.

Our choices were as follows. We use log variables, rather than normalized
or standardized variables. We kept information on burst intensity and spectra
through F},; and hardness ratios rather than with the original fluxes Fy —F,. We
initially eliminated Pgs4 and Pjg24 from consideration, and later eliminated P56
when we found it contributed mainly noise to the clustering process. We chose
to remove the location variables (I,b), already established by other researchers
to be random for the entire sample, but use them later to test for isotropy of
subsamples. The debiased Ty, q is used only in special tests. Our analysis was
thus performed in six or fewer dimensions using log T59, log Tyo, log Fiot, log
P256, lOg H321 and lOg H32.

Tables 1 and 2 give basic statistics for these six variables: means, standard
deviations, and bivariate values of Pearson’s linear correlation coefficient r. The
latter statistic for two variables V7, V5 is defined to be

S ViiVai — 2 3 Vi 3o Vo
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where the sums are over ¢ = 1,...,N. For N = 797 and assuming bivariate
normal populations, any |r| > 0.013 implies that a correlation between the two
variables exists at a two-tailed significance level P < 0.001 (Beyer 1968, pp.
389 and 283). But from an astrophysical perspective, we might consider any
relationship with |r| < 0.1 to be of little interest. Figure 1 shows the bivariate
scatter plots.

Table 2 gives an simple linearized view of the integrated database. The two
measures of duration and the two measures of spectral hardness have correla-
tion near unity, indicating they are nearly redundant. Fj,; and P56 are quite
dissimilar: F},; shows a strong correlation with burst duration (as found by Lee
& Petrosian 1997) and no relation to hardness, while P56 shows no relation to
duration but is mildly correlated with hardness (Mallozzi et al. 1995). Burst
duration is anticorrelated with hardness (K93; Fenimore et al. 1995). The cos-
mological anticorrelation between duration and peak flux reported by Norris et

r =

(7.1)
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al. (1995) is statistically significant, but accounts for only a few percent of the
variance between these variables. The correlation matrix based on the debiased
T values yields very similar results.

However, the scatter plots show a more complex story. First, many plots
show inhomogeneous distributions inconsistent with the unimodal multinormal
(i.e. multivariate Gaussian) population assumed by Pearson’s r. The distribu-
tions often seem bimodal with asymmetrical non-Gaussian shapes. One outlier
burst is also seen in several projections. We therefore consider the hypothesis
that the sample consists of two or more distinct classes, and proceed to find the
‘clusters’ using well-established methods.

7.4 Nonparametric Hierarchical Cluster Analy-
sis
7.4.1 Methodological Background

Unsupervised agglomerative hierarchical clustering is a procedure based on the
successive merging of proximate pairs of clusters of objects in multivariate pa-
rameter space. It produces a clustering tree or dendrogram starting with N
clusters of 1 member and ending with one cluster of N members. Hierarchical
clustering is a nonparametric operation assuming no prior knowledge of the dis-
tributions of objects in multidimensional parameter space. Unfortunately, there
are many possible ways to proceed; mathematics provides little guidance among
the choices and no probabilistic evaluation of the results without the imposition
of additional assumptions. The scientist must make four decisions to fully define
the clustering procedure:

1. Creating unit-free variables is essential for meaningful treatment of objects
in multivariate space (§3). A favorite choice by statisticians is standard-
ization, where each variable is normalized by the standard deviation of the
sample. Astronomers more commonly make logrithmic transformations or
construct ratios of variables sharing the same units. We follow the tra-
dition of GRB researchers by measuring spectral hardness with ratios of
fluences having the same units, and making logrithmic transformations of
all variables.

2. The metric defines the meaning of proximity between two objects or clus-
ters. Common choices are the simple Euclidean distance between unit-free
variables and the squares of Euclidean distances. We chose the former op-
tion for most of the analysis.

3. Several merging procedures can be used. One might begin by merging
the clusters with the nearest neighbors. This is called Single Linkage
clustering and is most familiar in astronomy where it is frequently called
the friends-of-friends algorithm. It tends to produce long stringy clusters,
and is equivalent to a well-known divisive clustering procedure known
as pruning the minimal spanning tree. Complete Linkage proceeds by
maximizing the distance between clusters, and leads to evenly bifurcating
dendrograms. For most of our analysis, we choose Average Linkage where
the distance between two clusters is the average of the pair of observations.
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This is a compromise between Single and Complete Linkage and tends to
give compact clusters. Specifically, the distance between clusters K and L
is given by (e.g. SAS Institute Inc. 1989, pp. 529ff; Johnson & Wichern
1992, pp. 584ff.)

w w
K

Dk = |fK—fL|2+n— (72)

np

where the bar indicates an unweighted mean, W = Y, |x; — X|?, and
ny is the number of members of the k-th cluster. Another popular choice
is Ward’s minimum variance criterion where the distance between the two
clusters is the ANOVA (analysis of variance) sum of squares between two
clusters added up over all variables (Ward 1963),

L1 (7.3)
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If the sample is an unbiased mixture of multinormal clusters, this method
joins clusters to maximize the likelihood at each level of the hierarchy.

4. As the procedure gives a hierarchy from N to one cluster, the user must
choose what level of the dendrogram to report as scientifically important
clusters. This choice can be assisted by examination of two statistics. The
squared correlation coefficient, R?, states the fraction of the total variance
accounted for by a selected level of clustering,

N9_ W
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RP=1- (7.4)
where the numerator is summed over the g clusters at the g-th level of hier-
archy. The squared semi-partial correlation coefficient, Rzp measures the
difference in the variance between the resulting cluster and the immediate
parent clusters normalized by the total sample variance,

Wy — Wi — Wi,
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RS, = (7.5)
R? thus tells how much of the scatter is explained by a given level of clus-
tering, and R, tells how much improvement is achieved between levels.

We emphasize again that there is no mathematically ‘best’ choice, although
extensive experience with problems in many fields has led to a preference for
certain combinations (e.g. standardized variables, squared Euclidean distances
and Ward’s minimum variance criterion). Once a clustering procedure and level
is chosen, the stablity of result can be investigated with k-means partitioning
and its statistical significance can be estimated if one is willing to make para-
metric assumptions such as multinormal shapes for each cluster. We conducted
extensive experiments with different choices.

7.4.2 Results

The last several levels of the clustering tree for the 797 GRBs using the six
unit-free variables shown in Table 1, Average Linkage and a Euclidean metric
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is shown in Figure 2a with details in Table 3a. The action taken at each level
is indicated in column 2 of Table 3, which may refer to a level higher in the
tree which (for brevity) is not shown here. Two types of mergers are seen: the
incorporation of ‘twigs’ of one or a few GRBs into a large preexisting ‘trunk’
(levels 1, 3, 4, and 5); and the union of two substantial branches into a single
larger trunk (levels 2 and 6). The first type has little effect on the variance of
the sample with Rgp < 1%. The single GRB brought into the main trunk in
level at level 1 is the distant outlier seen in several panels of Figure 1. The level
2 merger of clusters with 190 and 606 members is clearly the most important
structure, accounting for roughly 53% of the variance of the entire sample. This
is the bifurcation of the sample into two classes easily seen in Figure 1 and noted
by K93 and others. The principal finding that is not immediately obvious from
Figure 1 is the structure indicated at level 6. The main trunk of 599 bursts (plus
a few twigs to be merged later) is divided into groups of 93 and 506 bursts. This
division accounts for 10% of the total variance of the sample, indicated in both
the R? and R2, values.

We found that the twigs in the tree structure disappear if the peak flux P56
variable is omitted and the analysis is made in 5-dimensional space (Figure 2b
and Table 3b). Here the largest cluster of 593 members is formed by the union
of clusters with 107 and 486 bursts, again accounting for 10% of the sample
variance. It is possible that Ps5¢ is a nuisance variable irrelevant to the basic
astrophysics of GRBs, producing noisy ‘twigs’ seen in Table 3a and Figure 2.

We tested many variants of hierarchical clustering. We replaced Average
Linkage hypothesis with Complete Linkage, Single Linkage and Ward’s mini-
mum variance criterion. The Ward’s criterion computation, for example, gave
three clusters with 468, 145 and 184 bursts. We clustered using nonparametric
density estimation based on the 100 nearest neighbors, and clustered using the
principal components rather than the observed variables. Various methods were
tried with both the observed Tyy values and debiased Tg, values, with little ef-
fect on the results. All methods showed two strong clusters and the outlier but,
in some cases, the third cluster appeared only weakly.

To proceed further, we choose a single clustering structure for detailed study:
the 5-dimensional Average Linkage analysis (Table 3b) with three clusters —
Class I with 486 bursts, Class II with 203 bursts, Class III with 107 bursts
— and outlier. The membership of these clusters is given in Table 4, and
four projections of the clusters onto two-dimensional scatter plots are shown in
Figure 3. These are frames from the ‘grand tour’ movie of the 5-dimensional
dataset provided by the XGobi software where each cluster is ‘brushed’ with
a different symbol. Note that, in general, there is no reason why classification
structure should be most evident in projections parallel to the variable axes
shown in Figure 1. It is more important that the clusters show cohesion in
many projections of the dataset. The grand tour of the 797 GRBs shows that
Classes I, III and the outlier are very distinct in most projections. Class IT often
lies between Classes I and III (e.g. Figures 3a and 3b), but in other projections
is offset from the line between Classes I and III (e.g. Figures 3c and 3d). It
also appears elongated along some projections, while the larger Classes I and
IIT appear roughly hyperspherical.

This analyses described here provide considerable evidence for three major
clusters and an outlier. But there is some some worry that Class II is simply a
group of bursts with properties intermediate between the Classes I and IIT and
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should not be viewed as a distinct subpopulation. While nonparametric hier-
archical clusters methods can not address this question, it can be investigated
with parametric methods.

7.4.3 Validation of the classification

Mathematically well-founded methods for evaluating the statistical significance
of a proposed multivariate classification scheme are available under the assump-
tion that the population is a multinormal mixture; that is, the objects of each
class are drawn from multivariate Gaussians. All relationships between the vari-
ables must thus be linear (as in Table 2), although the relationships may differ
between clusters. There is no requirement of sphericity, so that clusters may
have shapes akin to pancakes or cigars with arbitrary orientations in multidi-
mensional space. These methods fall under the rubric of multivariate analysis
of variance (MANOVA).

The model can be expressed as follows (e.g. Johnson & Winchern 1992, pp.
246ff). For a p-dimensional dataset of g clusters each with n; members, the i-th
GRB in the j-th cluster gives a p-dimensional vector

Xij = p+ 1+ € (7.6)

where p is the overall population mean, 7; is the offset of the j-th cluster mean
from p, and €;; are independent normal variables with zero mean representing
the scatter of individual points about the mean. We test the null hypothesis

Hy:m=mn=...=7,=0 (7.7)

that the cluster means are not offset from each other. We construct two matrices
of sums of squares and cross-products as follows:

g
B = an(fl—f)(fl—f)'
=1
g m

W= 3> ®y -0 - %) (73)
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Three tests statistics have been proposed to test the null hypothesis (e.g. SAS
Institute Inc. 1989, pp. 17ff)):

Wilk's Lambda A* = det(W)/det(B + W),
Pillai's trace V= trace(B(B + W) ', and (7.9)
Hotelling’s trace U = trace(W 'B).

The distributions of these statistics have been determined mathematically. For
example, for large N = Y7 n;, —(N —1— (p+ g)/2)InA* has approximately a
chi-squared distribution with p(g — 1) degrees of freedom (Wilks 1932; Bartlett
1938). More generally, the distributions are related to the non-central F' dis-
tribution. For the 2-sample case, Hotelling’s trace is commonly known as the
Mahalanobis D? statistic. One can thus accept or reject the null hypothesis
that the clusters have the same mean location at a chosen level of statistical
significance.
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The results of our MANOVA calculations are summarized in Table 4. The
first row tests the hypothesis that the Classes I, IT and III have the same mean
with N = 796 bursts, omitting the outlier burst. The F' values are very high in
all cases, indicating that the clusters are different with extremely high statistical
significance (P << 10~*). For comparison, the P = 0.01 and 10~* confidence
levels correspond to F' =7?7. and ??. for 10 degrees of freedom. (Note that it is
not meaningful to quote probilities like P = 108 as the tails of the distribution
are poorly determined unless the sample size is extremely large.) This is the
first quantitative demonstration that at least two clusters exist among GRBs,
which was qualitatively reported by Delazay et al. (1992) and K93. The other
rows in Table 4 test the hypotheses that each proposed class has the same mean
as each other class. Again, the classes are found to be distinct with very high
significance (for 5 degrees of freedom, F' =??. corresponds to P = 10~ %).

7.5 Model-Based Maximum Likelihood Cluster
Analysis

7.5.1 Methodological Background

In the previous section, we conducted a hierarchical clustering analysis with-
out making assumptions regarding the shapes of the clusters, but needed the
parametric assumption of normality to estimate the statistical significance of the
resulting clusters. It is reasonable to conduct the entire analysis, both clustering
and validation, within a model-based framework. We report here an analysis
of this type again assuming that the GRB population consists of a mixture
of multivariate Gaussian classes. This model is developed by Scott & Symons
(1971), Murtagh & Raftery (1984), and Banfield & Raftery (1993). Application
of the Bayesian Informatoin Criterion for validation is discussed by Dasgupta
& Raftery (1998), and use of the EM Algorithm for computation is described
by Celeux & Govaert (1995) and Fraley (1998).

In the model considered here, the p-dimensional observations x; are drawn
from ¢ multinormal groups charaterized by a vector of parameters 8 for k =
1,...,g. Given observations x = x;,,..., 2N, let v = (v1,72,...,7~v)T be a
cluster assignment vector, where ; = k when z; comes from the k-th group.
Our goals are: to determine the number of GRB types. g; to determine the
cluster assignment 7y of each burst; and estimate the mean pj location and
covariance matrix (containing standard deviations) X for each cluster.

Following Fraley (1998), the population density is expressed as follows:

f(x]8) ~ MVN(u,=p) k=1,...,9

fxlo) = > mfie(x]0) (7.10)
k=1

g
Z’frk = 1.
k=1

where MV N means multivariate normal and 7 are the mixing probabilities
associated with v = (y1,...,v~x)T and 7 is the vector transform. We estimate
the parameters using the principle of maximum likelihood, where the likelihood
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is
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where I, = {i : v; = k} is the set of indices corresponding to observations

belonging to the k-th group. For MV N populations, the maximum likelihood
estimator of the group means py is known to be the group average i = X =
Yic 1, Xi /ni, where ny is the number of observations in the k-th group. It can
then be shown algebraically that the log-likelihood is

l(zla"')Eg;7|x;ﬂ17"'7ﬂg) =
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_pfg() =5 2 Atr (W) + i log [}, (7.12)
k=1
where
Wy, = Z(Xi — %) (xi — %) " (7.13)

i€l
is the sample cross-product matrix for the k-th group. ??Should W be renamed
to avoid confusion with W in the previous section??

The maximum likelihood solution is computationally straightforward in some
cases. If all of the groups are hyperspheres with the same standard deviations
(i.e. ) = 0°I), then the solution is identical to Ward’s (1963) minimum vari-
ance criterion in agglomerative clustering. Other well-known solutions apply for
hyperspheres of different standard deviations or identical hyperellipsoids. But,
in the case of GRBs, we have no astrophysical reason to believe these simplifi-
cations occur. We thus treat the general case that the 3 contain covariances
and differ between clusters (e.g. one cluster may be a hypercigar with arbi-
trary orientation in p-space, and another may be a hyperpancake with another
orientation). In this case, the maximum likelihood solution corresponds to the
cluster assignments « that minimize (Scott & Symons 1971)

g
%%

anlog|—k|. (7.14)

k=1 K

Computation of the maximum likelihood solution can be embedded within
an agglomerative hierarchical clustering procedure as described in §3. But the
computation becomes cumbersome for problems with large N and/or large p,
and a number of more efficient approaches have been proposed. The method
used here (Fraley 1998) and implemented in the MCLUST code involves pa-
rameterization of the 3 matrices in terms of their eigenvectors and eigenvalues
(analogous to a principal components analysis), and iterative alternation be-
tween hierarchical clustering steps and relocation of the cluster using the EM
Algorithm. The EM (Estimation-Maximization) Algorithm (Dempster, Laird &
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Rubin 1977), one of the most successful methods in modern statistics, is a pro-
cedure for iteratively maximizing likelihoods in a wide variety of circumstances.
In the present application, one estimates the conditional probability that ob-
servation x; belongs to the k-th group, and relocates the cluster means that
maximizes the likelihood at each step of the hierarchical clustering procedure.
Although the computational procedure has some limitations (e.g. convergence
of the EM iterations is not guaranteed; clusters can not be extremely small), it
is generally efficient and effective for Gaussian clustering problems.

Models that do not maximize the likelihood can be quantitatively compared
to the best solution using a well-respected tool known as the Bayes Information
Criterion (BIC; ??Schwarz 197877; Akaike 1979). This issue is important in
the present application since we wish to determine the statistical significance of
(say) three vs. two classes of GRBs. The likelihood ratio of two models, also
known as the Bayes factor, is (Kass & Raftery 1995)

p(x|M>)

Bayes factor = ————. 7.15
e 19

The Bayes factor can be approximated by the BIC,
BIC = 2(l1 — l2) — (m1 — THQ)lOgN, (716)

where [y is the likelihood and m; is the number of parameters for one mix-
ture model, and similarly for I, and ms. The BIC (and its closely related
Akaike Information Criterion) measure the balance between the improvement
in the likelihood and the number of model parameters needed to achieve that
likelihood. While the absolute value of the AIC or BIC is not informative, dif-
ferences between two models give reliable measures of their relative validity and
are widely used in maximum likelihood studies. The use of the BIC in validating
clustering models is discussed by Dasgupta & Raftery (1998).

7.5.2 Results and Validation

To reduce the dimensionality of the problem and the complexity of the calcu-
lation, we eliminated the highly redundant T59 and Hso variables (see Figure
1) and considered only the 3 variables Ty, Fi,x and Hso; for the sample of
797 BATSE GRBs. The MCLUST model-based clustering procedure described
above was run for trials of g = 2,3,...,367 groups. The resulting values of the
relative BIC values BIC(g)—BIC(1) are plotted in Figure 4. The maximum BIC
is achieved for three classes. Most importantly, the BIC value for g = 3 is 7?7
~ 70 7?7 above that for ¢ = 2. The corresponding probability that the g = 2
model is as successful as the g = 3 model is P < 10~7 (??ref??). This result
strongly confirms the analysis in §3 regarding the existence of three statistical
significant clusters.

We have also calculated the BIC for g = 1,...,9 with various constraints on
the covariance matrix ¥ such as hypersphericity and uniformly shaped ellipsoids.
Spherical clusters give poor fits. Uniform ellipsoids give good fits with 4 and 8
clusters. But in all cases, the maximum likelihood asuming 2 clusters is much
lower than the likelihood of > 3 clusters.

The cluster assignment vector -y for the g = 3 model with unconstrained X is
given in Table 4. About 85% of the assignments are the same as those obtained
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from the nonparametric hierarchical clustering procedure in §4, so that we note
only differences between the two clustering results with * and # markings. The
close agreement between the cluster assignments in the two methods supports
the assumption that the clusters can be viewed as multivariate Gaussians with
considerable accuracy.

7.6 Cluster Properties

We can now examine the properties of GRBs within each cluster with reasonable
confidence that the populations are distinct from each other but internally ho-
mogeneous. These properties become inputs to astrophysical theories seeking to
explain GRB bulk properties. Table 6a lists the means and standard deviations
of the principal variables for each cluster based on both the nonparametric and
model-based clustering procedures. The two methods give very similar results.
The three types are well-separated in the burst duration variables: Cluster I
bursts have the longest durations around 10 — 20 seconds, Cluster III bursts
have the shortest durations below 1 second, and Cluster II. bursts have inter-
mediate durations around 2 seconds. Cluster II bursts are also intermediate
in their fluences, although their fluence distribution overlaps that of the fainter
Class III. bursts. The hardness ratios of all three clusters overlap somewhat, but
here Class IT bursts have the softest spectra and Class I bursts have intermediate
spectra. We can thus classify the types in the three principal dimensions Dura-
tion/Fluence/Spectrum (Table 6¢): Class I is long/bright/intermediate, Class
IT is intermediate/intermediate/soft, and Class III is short/faint/hard.

A major constraint for the interpretation of GRBs has been the remarkable
isotropy of their spatial distribution in the celestial sphere. It is possible that,
while the bulk of GRBs are isotropic and have an inferred extragalactic origin,
some class of GRBs have significant anisotropy which would reflect a Galactic
origin (see Lamb 1995). We apply four statistical tests for isotropy discussed
by Briggs (1993) and applied by Briggs et al. (1996) to various subsamples
of the 3rd BATSE Catalog of GRBs. The statistics are: <cosf >, where 6 is
the angle between a burst and the Galactic center; <sinZb — % >, where b is
the Galactic latitude; Rayleigh-Watson W; and Bingham B. <cosf > tests the
dipole moment around the Galactic center, <sin?b — % > tests the quadrapole
moment with respect to the Galactic plane, WV tests the dipole moment around
any point in the celestial sphere, and B tests the quadrapole moment around
any plane or two poles. The expected values for the four statistics assuming
random isotropic distribution on the sphere are 0, 0, 3 and 5 respectively. The
asymptotic distributions of these statistics are known.

Table 5c shows the results of this analysis for Clusters I-III, kindly calculated
for us by Michael Briggs. No deviations from isotropy are found. The <cosf >
and <sin® — % values lie within one standard deviation of the expected value for
a random distribution. The W and B values must be larger than the expected
value to indicate anisotropy. The only such case, Class II with B =3¢, has a
deviation with very low significance (Prob < 0.2). We thus do not confirm the
Belli’s (1997) report of significant differences in spatial distributions of burst
Classes I and III, although we did not specifically test the Galactic latitude
distribution.

In principle, the relative populations of the three classes may be an important
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constraint on astrophysical theory. We find that Class I contains more than half
of the bursts with the remainder divided roughly evenly between Class II and
Class III (Table 6¢). But we do not believe our analysis gives a precise census
for two reasons. First, the exact assignments of individual bursts to clusters
depend strongly on the detailed assumptions of the clustering algorithms. For
example, Class II is larger than Class III in the 5-dimensional nonparametric
procedure but is smaller in the 3-dimensional model-based procedure. Second,
the numbers of weaker bursts in Classes II and III are strongly dependent on
the details of the BATSE instrument’s burst triggering process which produces
a complicated truncation bias.

We look for structure within each of the clusters by computing the correlation
coefficients similar to those in §3 for the entire sample. Results are given in Table
7. Here we see a systematic difference between the two clustering methodologies:
nonparametric Average Linkage clustering tends to give stronger correlations
between the variables than the parametric multinormal clustering. ?? Can this
be explained in an intuitive fashion 7?7 The Average Linkage clustering shows
positive correlations between fluence and spectral hardness and between fluence
and duration in Classes I and III, but anticorrelations in Class II. Only the
fluence-spectral relations in Classes I and III are convincingly present in the
model-based results. We consider this result to be a possible but not secure
result of our study.

7.7 Discussion

We thus find, using clustering and validation methods with different mathemat-
ical underpinnings, that three classes of GRBs are present in our subset of the
Third BATSE Catalog. Most of the structure can be found using three funda-
mental burst properties, Duration/Fluence/Spectrum. The class properties and
relation to previous research can be briefly summarized as follows:

Class I These long/bright/intermediate bursts correspond to the well-known
populous long/soft class of K93 and others. Within this group, we do not
confirm a hardness-duration correlation reported by Dezalay et al. (1996)
and Horack & Hakkila (1997), but rather find a possible fluence-hardness
correlation (Table 7a and 7b).

Class II The discovery of this group with intermediate/intermediate/soft prop-
erties is the principal result of this study. The group is easily distinguished
in the projections of Figure 3, but can also be discerned in some panels of
Figure 1. For example, it lies between Classes 1 and 2 in the T59 — H3o,
Too — Fiotand Tog — H3oy1 scatter plots.Figure 5 shows the projection of
the classes onto the univariate Tyg. Class IT accounts for many, but not
all, of the bursts in the small peak around 2 < Tyg < 5 sec between the
major short and long duration peaks. It is possible that our Class II is
related to the class of no-high-energy (NHE) burst and peaks discussed by
Pendleton et al. (1997). These bursts have unusually weak Fj emission,
soft 50 — 300 keV spectra, and low Fj,;. However, the NHE class does
not appear to exhibit a clear duration segregation from other bursts as we
find for Class II. Class IT does not appear to be the third cluster found
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by Baumgart (1994, see his Table 3), but the high dimensionality of his
analysis prevents a simple comparison with our low dimensionality study.

Class IIT This short/faint/hard group and corresponds to the short/hard burst
type of K93 and others. Fluence-duration and fluence-hardness correla-
tions may tentatively be present within the class. Note that while the
mean location of this type is consistent in the two clustering schemes, the
population varies considerably between clustering algorithms.

Outlier BATSE trigger event 2757, or burst 3B 940114, is the outlier in the
nonparametric analysis of §4 and is clearly visible in many projections in
Figures 1 and 3. (The model-based analysis of §5 can not locate clusters
with very few members and assigned this event to Class II.) It has an
exceedingly soft hardness ratio and short burst duration. But examination
of the original BATSE database shows that the F; — Fy fluxes are very weak
with large measurement uncertainties. The published 3B catalog gives
only an upper limit to its total fluence and no estimate of its hardness
ratio. The unusual properties of this burst are thus very likely to be
spurious.

The multivariate analysis described here is not comprehensive and may not
have uncovered all of the structure in the Third BATSE Catalog of bulk GRB
properties. Our reduction of dimensionality may have been too severe omitting,
for example, the potentially important Fy as a distinct variable (Pendleton et al.
1997; Bagoly et al. 1997). Many methodological options were not exercised. For
example, it would be valuable to repeatedly apply the k-means partitioning algo-
rithm to the database under the assumption that three clusters are present (see
Murtagh 1992 for an astronomical application of this method), check for skew-
ness or kurtosis in the clusters, and undertake an oblique decision tree analysis
to give analytical formulation to hyperplanes separating the clusters. (see White
1997). Codes for these and many other multivariate techniques are pubically
available through the Web metasite StatCodes at www.astro.psu.edu/statcodes.

However, the efforts described here are far more capable of finding and quan-
tifying clustering in the database than most previous analyses (§1). Previous
studies have been based on qualitative rather than quantitative procedures for
identifying structures, and provide no statistical validation of their claims. It is
thus not surprising that we uncovered structure missed by previous researchers.
In particular, our confidence in the presence of a third cluster, Class II, is strong.
Two completely independent mathematical procedures (§4 and §5) found very
similar structure, each validated with high statistical confidence.

It is possible that the clustering reported here is indeed present in the
database, but does not have an astrophysical origin. The complex triggering
mechanism of the BATSE instrument mechanism and biases in bulk property
values at low signal-to-noise ratio are two problems that probably affect the mul-
tivariate structure. However, we believe such instrumental biases will generally
affect the number of bursts found in some regions of the multivariate hyperspace
and may alter the location of clusters, but are unlikely to cause the appearance
of clustering that is not present in the underlying population. Furthermore, the
third cluster we uncovered lies, in most projections, between the two clusters of
K93. Observational selection effects usually modify the edges of distributions
rather than their interiors.
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We conclude that the Third BATSE Catalog shows three statistically signif-
icant types of bursts (Duration/Fluence/Spectrum): long/bright/intermediate,
intermediate/intermediate/soft, and short/faint/hard. These types are likely to
be astrophysically real and not caused by observational selection. This finding
should be considered an important input into astrophysical theories for GRBs.
However, statistical anlaysis is unable to distinguish between burst types repre-
senting fundamentally different astrophysical processes, and distinct conditions
within a single astrophysical model.

Our results can be confirmed and extended in two fashions. First, the anal-
ysis described here can be validated with several hundred more bursts collected
by BATSE since the September 1994 cutoff in the database used here. Second,
following Baumgart (1994), the dimensionality of the problem can be enlarged to
include detailed characteristics of the burst temporal behaviors. Burst smooth-
ness vs. peakiness, charactertic wavelet scales, spectral evolution, and other pa-
rameters can be included. With this enlarged database, one can perform both
an unsupervised exploratory cluster analysis similar to that described here, and
a MANOVA-type analysis that assumes the existence of the three groups to
determine whether the clusters have distinctive temporal properties.
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Table 7.1: Average GRB properties for the entire sample

Variable Mean S.D
log Ts0 (sec) 0.55 0.92
log Ty (sec) 0.96 0.92
log Fiot (erg cm—2) -5.61 0.76
log P»s6 (photons s=! cm™2) 0.16 0.45
IOg H321 0.25 0.33
log Hso 0.48 0.30

Table 7.2: Correlation coefficients for the entire sample

IOg T50 IOg Tg() IOg Ftot IOg P256 IOg H321 IOg H32
IOg T50 1.00
log Ty 0.97 1.00
log Fiot 0.63 0.66 1.00
log P36 -0.01 0.04 0.59 1.00
log H3o -0.36 -0.36 0.02 0.24 1.00
log H3o -0.35 -0.35 -0.00 0.19 0.96 1.00
Table 7.3: Average linkage hierarchical cluster analysis
Level Merger Members R2 — R?
(a) Six dimensional analysis

8 10+ 15 506 0.08 0.65

7 14 4+ 137 93 0.00 0.65

6 8+ 7 599 0.10 0.55

5 9+ 266 188 0.00 0.55

4 5426 190 0.00 0.55

3 6+ 12 606 0.01 0.54

2 3+4 796 0.53 0.01

1 2+ 616 797 0.00 0.00

(b) Five dimensional analysis

6 15+ 21 107 0.01 0.70

5 10+ 8 486 0.01 0.69

4 T74+20 203 0.01 0.68

3 6+ 5 593 0.10 0.58

2 3+4 796 0.58 0.00

1 2+ 616 797 0.00 0.00
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Table 7.4: Class membership of bursts based on 5-dimensional Average Linkage

clsutering (3B trigger number)

107*
109
110
111
114
121
130
133
143
148
160
171
204
211
214
219
222
223
226
235
237
249
257
288
332
351
394
398
404
408
451
467
469

?? One burst is missing from this list 77

472
473
503
540*
543*
548
549
959
963
S7T
991
594
606
630
647
658
659
660
673
676
678
685*
686*
692
704
T17*
741*
761
764
773
795
803*
815

816
820
824
825
829
840
841
867*
869
907
927*
938
946
973
999*
1009
1025*
1036
1039
1042
1046
1085
1086
1087
1122
1123
1126
1141
1148
1150
1152
1156
1157

1159
1192
1196
1197
1200
1213
1218*
1235
1244
1279
1288
1291
1303
1318
1384
1385
1390
1396
1406
1419
1425
1432
1440
1446
1447
1449
1452%*
1456
1458
1467
1468
1472
1515

1533
1540
1541
1546
1551
1552
1558
1559
1561
1567
1574
1578
1579
1580
1586
1590
1601
1604
1606
1609
1611
1614
1623
1625
1626
1628
1642
1646
1651
1652
1653
1655
1656

1657
1660
1661
1663
1667
1676
1683*
1687
1700*
1704
1709*
1711
1712
1714
1717
1730
1731
1733
1734*
1740
1742
1806
1807
1815
1819
1830
1883
1885
1886
1922
1924
1956
1967

(a) Class I (486 bursts)

1982 2138 2304 2431*
1989 2140 2306* 2432
1993 2143 2309 2435
1997 2148 2310 2436
2018 2149 2311 2437*
2019 2151 2315 2438
2037 2156 2316 2440
2041*% 2181 2321 2441
2044* 2187* 2324 2443
2047 2188 2325 2446
2053 2189 2328 2447
2061 2190 2329 2450
2067* 2191 2340 2451
2069 2193 2344 2452
2070 2197 2345 2472
2074 2202 2346 2476
2077 2203* 2362 2477
2079 2204 2367 2482
2080 2211 2371 2484*
2081 2213 2373 2495
2083 2219* 2375 2496
2087+ 2228 2380 2500
2090 2232 2383 2505
2093 2233 2385* 2508
2101 2230 2387 2510
2102*% 2244 2391 2511
2106 2252 2392 2519
2110 2253 2394 2522
2111 2267 2405 2528
2112 2276 2419 2530
2119* 2277 2428 2533
2122 2287 2429 2537
2133 2298 2430 2541

2703
2560
2569
2570
2581
2586
2589
2593
2600
2603
2606
2608
2610
2611
2619
2620
2628
2634
2636
2640*
2660
2662
2663
2664
2665
2671*
2681
2688
2691
2695
2696
2697
2700

2877
2706
2709
2711
2725*
2727
2728*
2736*
2749*
2751
2753
2770
2774
2775
2780
2790
2793
2797
2798
2799*
2812
2815
2825
2831
2843
2852
2853*
2855
2856
2857
2862
2863
2864

3003
2889
2890
2891
2894*
2897
2898
2900*
2901*
2913
2916
2919
2922
2924
2925
2927
2929
2931
2932*
2947
2948
2950
2953
2958
2961
2984
2985
2992
2993
2994
2996
2998
3001

3109
3005
3011
3012*
3015
3017
3026*
3029
3032
3035
3039*
3040
3042
3055
3056
3057
3067
3070
3071
3072*
3074
3075
3076
3080
3084
3085
3091
3093
3100
3101
3102
3103
3105
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(b) Class II (203 bursts)
138 512 856 1154 1635 2003 2146 2291 2384 2523 2693 284¢
185  537# 878 1211 16364 2040 2155 2312 2395 2529 2701 284¢
207 547 906 1223 1659 2043 2159 2317# 2434 2536 2715# 2851
218# 951 909 2389 1662 2049 2161 2320 2448 2564 2748 28604
229 568  936# 1308 1665 2068 2163 2326 2449 2583 2755 2817
254 575 1051 1359 1680 2095 2167 2327 24544 2585 2788 2817¢
289 603# 1073 1404+# 1694 2099+# 2201 2330 2463 2597 2795 2892
297 677 1076 1453  1719# 2103 2205 2332 2464 2599 2800 289¢
298 729 1088 1461 1736 2115 2206 2352 2485 2614 2801 291(
432 788 1096 1463 1741 2117  2217# 2353 2487 2615 28104 291¢
444 799 1097 1481 1760 2125 2220 2357 2502  2623# 2814 293¢
474 809 1102 1518 1791 2126 2265 2360 2504  2632# 2821 2952
480 830 1112 1553# 1851 2132  2268# 2365# 2512 2649 2823 2964
486 836 1128 1566 1953# 2142# 2273 2372 2513#  2679# 2828 296¢
491 845# 1129 1588 1968 2145 2288  2377# 2514 2690 2834 2973
(c) Class III (107 bursts)
105 493 752 1120 1298 1492 1974 2207 2381 2458 2750 288(
108 501 753 1125 1306 1634 2035 2230 2382 2460 2760 2917
179 516 755 1145 1346 1637 2056 2254 2393 2515 2776 2944
228 526 834 1153 1382 1664 2105 2283 2401 2633 2830 294!
373 955 914 1167 1416 1679 2114 2347 2423 2641 2844 2951
401 680 942 1190 1435 1693 2129 2349 2424 2677 2848 298(
414 690 974 1204 1439 1701 2133 2358 2442 2680 2850 298¢
465 T34# 1114 1221 1443 1747 2152 2368 2453 2719 2861 299(
(d) Outlier
2757*

x Placed into Class IT by Gaussian model-based clustering procedure

# Placed into Class IIT by Gaussian model-based clustering procedure

?? Format of Table 4 will be fixed. Requires AASTeX deluxetable style file. 77

Table 7.5: Multivariate analysis of variance statistical tests

Clusters

I, I1, III
1,11

I, III
1, II1

Wilk’s

Ax
0.153 245.
0.159 719.
0.515
0.301

F

111.
141.

Pillai’s
Trace F Trace
0.934 139. 4.96
0.840 719. 5.27
0.485 111. 0.94
0.699 141. 2.32

Hotelling-Lawley’s

F
391.
719.
111.
141.

Degrees of
freedom

7?7 Some F values seem wrong. Text is missing probabilities. 77

10
5
5
5
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Table 7.6: Cluster properties
Variable Method! Cluster
I IT 111
(a) Means and standard deviations
log T50 NP 1.13+ 044 031 £0.29 -0.80 £ 0.41
MB 122+ 039 0.29 £ 041 -0.91 +0.35
log Ty NP 1.55+ 040 0.60 £ 0.37 -0.42 + 0.44
log Fiot NP -5.21 £ 0.59 -6.10 £ 0.37 -6.37 £ 0.57
MB -5.13 £ 0.58 -5.93 £ 0.47 -6.46 £ 0.54
log H3o1 NP 0.19 £0.27 0.07+043 0.51 £ 0.27
MB 0.21 £0.26 0.16 £ 0.40 0.52 £ 0.28
log Hso NP 043 £0.23 0.34 £ 041 0.70 £ 0.26
(b) Isotropy
<cos 0> NP 0.015 -0.041 0.010
<sin? b—1/3 > NP -0.012 -0.025 0.028
Rayleigh-Watson NP 0.39 1.28 1.80
Bingham NP 2.02 7.32 1.95
(c) Summary
Number NP 486 203 107
MB 426 170 201
Duration long intermediate short
Fluence bright intermediate faint
Spectrum intermediate soft, hard

L NP = nonparametric clustering analysis in 5 dimensions (§3);

MB = model-based clustering analysis in 3 dimensions (§4)
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Table 7.7: Correlation coefficients within clusters

log Ts9  log Tog log Fio: log Hso1  log Hso
(a) Class I - Nonparametric clustering
|r| > 0.77 corresponds to P < 0.001 significance level

IOg T50 1.00

log Ty 0.88 1.00

log Fiot 0.10 0.22 1.00

log H3: -0.11 -0.08 0.39 1.00

log Hss -1.117 -0.08 0.38 0.97 1.00

(b) Class I — Model-based clustering
|r| > 0.77 corresponds to P < 0.001 significance level

IOg T50 1.00

IOg ng N/A N/A

log Frot N/A 0.01 1.00

log H321 N/A -0.01 0.06 1.00

log Hs, N/A  N/A N/A N/A N/A

(c) Class II — Nonparametric clustering
|r] > 0.77 corresponds to P < 0.001 significance level

IOg T50 1.00

log Ty 0.89 1.00

log Fiot -0.05 -0.02 1.00

log H3: -0.00 -0.08 -0.21 1.00

log H3» -0.00 -0.08 -0.26 0.96 1.00

(d) Class II — Model-based clustering
|r| > 0.77 corresponds to P < 0.001 significance level

IOg T50 1.00

IOg ng N/A N/A

log Fiot N/A  -0.03 1.00

log H3z1 N/A -0.05 0.02 1.00

log Hs, N/A  N/A N/A N/A N/A

e) Class III — Nonparametric clusterin
g
|r] > 0.7?7 corresponds to P < 0.001 significance level

IOg T50 1.00

log Ty 0.08 1.00

log Fiot 0.26 0.32 1.00

IOg H321 -0.13 -0.16 0.40 1.00

log Hs -0.10 -0.12 0.44 0.90 1.00

(f) Class III — Model-based clustering
|r| > 0.77 corresponds to P < 0.001 significance level

IOg T50 1.00

IOg ng N/A N/A

log Fiot N/A 0.03 1.00

log H321 N/A -0.01 0.07 1.00

log Hs» N/A  N/A  N/A N/A  N/A
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Figure 7.1: Mosaic of scatter plots of six bulk properties for the N = 797 GRBs
from the Third BATSE Catalog.
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Figure 7.4: Burst types and Tyo burst duration based on 5-dimensional Average
Linkage clustering procedure. Class 1 = white, Class 2 = black, Class 3 = grey.
The Class 4 burst is shown as an X.



Chapter 8

Neural Networks

8.1 The Problem

The multilayer perceptron (MLP) is an example of a supervised method, in that
it a training set of samples or items of known properties is used. The Koho-
nen self-organizing feature map is an example of an unsupervised method. In
general terms, discriminant analysis seen in Chapter 4 is a family of supervised
method, whereas cluster analysis explored in Chapter 3 is a family of unsuper-
vised methods.

In dealing with the MLP, the single perceptron is first described, and subse-
quently the networking of perceptrons in a set of interconnected, multiple layers
to form the MLP. The influential generalized delta rule, used in training the
network, is introduced via the simpler case of the delta rule. We then look at
what design considerations one should consider, for the design of one’s network
for a specific problem.

The self-organizing feature map method is then described.

A number of examples are given of both MLLP and Kohonen map.

8.2 Mathematical Description

8.2.1 Perceptron Learning

Improvement of classification decision boundaries, or assessment of assignment
of new cases, have both been implemented using neural networks since the 1950s.
The perceptron algorithm is due to Rosenblatt ni the late 1950s. The percep-
tron, a simple computing engine which has been dubbed a “linear machine” for
reasons which will become clear below, is best related to supervised classifica-
tion. The idea of the perceptron has been influential, and generalization in the
form of multilayer networks will be looked at later.

Let x be an input vector of binary values; o an output scalar; and bf w a
vector of weights (or learning coefficients; initially containing arbitrary values).
The perceptron calculates o = E]. w;z;. Let 8 be some threshold.

If o > 0, when we would have wished o < € for the given input, then i
is incorrectly categorized. We therefore seek to modify the weights and the
threshold.

221
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Set 8 <— 6 + 1 to make it less likely that wrong categorization will take
place again.

If z; = 0 then no change is made to w;. If z; = 1 then w; +— w; — 1 to
lessen the influence of this weight.

If the output was found to be less than the threshold, when it should have
been greater for the given input, then the reciprocal updating schedule is im-
plemented. The updates to weights and thresholds may be denoted as follows::

0= E wjmj
J

Al =—(tp, —0p) = =0,
(which the change in threshold for patter p)

Aw; = (tp — 0p)Tpi = OpTpi

(change in weights for pattern p).

If a set of weights exist, then the perceptron algorithm will find them. A
counter-example is the exclusive-or, XOR, problem, represented in the following
table:

Input vector Desired output
0

0,0
0,1 1
1,0 1
1,1 0

Y

Here it can be quickly verified that no way exists to choose values of w;
and ws to allow discrimination between the first and fourth vectors (on the one
hand) and the second and third (on the other hand).

Consider the following sets of four input vectors which we wish to automat-
ically categorize in accordance with the given truth table values. Truth tables,
per se, are not at issue here. These sets of vectors, and class assignments, will
serve purely as examples. A condition for the applicability of the perceptron
learning algorithm will become clear, on consideration of graphical representa-
tions of these problems. Draw the 2-valued points in the plane. Note the regions
spanned by the F-related points versus the T-related points in each case.

AND OR XO0R
0 0 F 0 0 F 0 0 F
0 1 F 0 1 T 0 1 T
1 0 F 1 0 T 1 0 T
1 1 T 1 1 T 1 1 F

The line (hyperplane) separating T from F is defined by < sumjw;z; = 6.
In the XOR case, linear separability does not hold. Perceptron learning fails for
non-separable problems.

A multilayer perceptron which solves the XOR problem is shown in Fig. 8.1
Values of weights and thresholds which permit this are shown.
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Threshold -0.8

Thresholds 2, -0.1

Figure 8.1: MLP solving the XOR problem, which cannot be solved with a
single perceptron.

Network designs which are more sophisticated than the simple perceptron
can be used to solve this problem. The network shown in Fig. 7.1 is a feed-
forward 3-layer network. This type of network is the most widely used. It has
directed links from all nodes at a level to all nodes at the next level. Such a
network architecture can be related to a linear algebra formulation (see remarks
at the end of the next section). It has been found to provide a reasonably
straightforward architecture which can also carry out learning, or supervised
classification, tasks quite well. For further discussion of the perceptron, Gal-
lant (1990) can be referred to for various interesting extensions and alternatives.
Other architectures are clearly possible: directed links between all pairs of nodes
in the network, as in the Hopfield model; directed links from later levels back
to earlier levels as in recurrent networks; and so on.

The Delta Rule for Weight Updating

A generalization of a perceptron is a set of layers of perceptron, with connections

between all neurons in one layer and all neurons in the following layer. This

gives rise to what is termed a feedforward multilayer perceptron. See Fig. 7.2.
Initially we consider linear units only, i.e.

Opj = Y Wijlyi
i

The input at the ¢th neuron, z,;, is occasioned by the pth pattern. The
weight connecting the ¢th neuron in a given layer, to the jth neuron in the
subsequent layer, is denoted w;;. Consider an error term which we seek to
minimize at each output neuron j; and let p by be the pattern which is currently
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wij

ouPUT
INPUT [‘R?;N LAYER
LAYER

Figure 8.2: The MLP showing a 3-layer architecture, and one arc.

being presented to the net. Then

E, =

Z(tm’ - Opj)2

J

N | =

where o is the output obtained when using the current set of weights. The
multiplicative constant of a half is purely conventional, to make this error term
look like an energy expression. The target output, ¢, is what we wish the network
to replicate on being presented with the pth pattern. Consider

E=) E,
P
We may write the expression for E, as
1 2
2 Z Op;
J
The rate of change of E, with respect to w;; is given by the chain rule:

OE,  OE, doy;
8wij - aOm' 8wij

Now, since E, = 3 > (tpj — 0pj)?, the first term here is —(t,; — 0p;). Given
that linear units are being considered, i.e. 0,; = ), w;;Zp;, the second term
equals z,;. The gradient of E, is thus

0F
= —0p;pi

8wij

If 0E/0w;; = _,0E,/0w;; and if updates do not take place after every
training pattern, p, then we may consider the updating of weights as a classical
gradient descent minimization of E. Each weight is updated according to

Apwij = n(tp; — 0pj)Tpi
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where 7 is a small constant. This corresponds to steepest descent optimization:
we vary the weights in accordance with the downwards slope.

Although the algorithm presented for determining optimal weight values
through training is valid, it is not difficult to see that we can view what has been
done in linear algebra terms (see Appendix). Consider the matrix W; as defining
the weights between all input layer neurons, ¢, and all hidden layer neurons,
j- Next consider the matrix W5 as defining the weights between all hidden
layer neurons, 7, and all output layer neurons, k. For simplicity, we consider
the case of the three-layer network but results are immediately applicable to a
network with more layers. Given a vector of inputs, x,, the values at the hidden
layer are given by z,W;. The values at the output layer are then z,1W;W>.
Note that we can “collapse” our network to one layer by seeking the weights
matrix W = W W,. If t, is the target vector, then we are seeking a solution
of the equation z,W = t,. This is linear regression. The backpropagation
algorithm described above would not be interesting for such a classical problem.
Backpropagation assumes greater relevance when nonlinear transfer functions
are used at neurons.

Generalized Delta Rule for Nonlinear Units

Nonlinear transformations are less tractable mathematically but may offer more
sensitive modeling of real data. They provide a more faithful modeling of elec-
tronic gates or biological neurons. Now we will amend the delta rule introduced
in the preceding section to take into consideration the case of a nonlinear trans-
fer function at each neuron.

Consider the accumulation of weighted values of a neuron

Iletm' = E W;jOpi
i

where 0; = x; if unit 4 is an input one. This is passed through a differentiable
and nondecreasing transformation, f,

opj = fj(nety;)

Normally this transfer function is a sigmoidal one. If it were a step function,
this would violate our requirement for a differentiable function. We will see
shortly that we will want to take the derivative of f, in other words find the
slope which will be further use in making iterative improvements. A sigmoidal
function is an elongated “S” function, which is not allowed to buckle backwards.
One possibility is the function y = (1+e~%)~!. Another choice is the hyperbolic
tangent or tanh function: for z > 20.0,y = +1.0; for y < —20.0,y = —1.0;
otherwise y = (e — e ")/(e” + e ™). Both of these functions are invertible
and continuously differentiable. Both have semilinear zones which allow good
(linear) fidelity to input data. Both can make “soft” or fuzzy decisions. Finally,
they are similar to the response curve of a biological neuron.

As before, the change in weights will be defined to be proportional to the
energy (or error function) slope, and the chain rule yeilds:

8Ep o 8E'p 8netpj
8wij o 8netpj 8wij

prij 0.8
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From the definition of net,;, the last term is op;. Let d,; = —0E,/Onety;.
Hence

OFE
- Wipj = pjop;

or
Apwij = N0p;jOpi
where 7 is the learning constant, usually a small fraction which prevents re-
bounding from side to side in ravines of the energy surface.
Note that for a linear output unit, by definition o,; = net,; and so we have

—0E,/00,; = p; as was seen above when considering such units.
It must now be determined how to define J,;. We have

_ 0B, _ 0B, 0oy
8netpj - aom' 8netpj

5pj -

and the last term is equal to f}(net,j), i.e. the derivative of the transfer function.
Two cases will be distinguished depending on whether the unit is an output one
or a hidden layer one.

Case 1: Unit j is an output one, and it is found that
Opj = (tpj — Opj)f]{(netpj)
Case 2: Unit j is a hidden layer one and it is found that

Opj = f]l (nety;) Z OplkWrj
k

Hence the deltas at an internal node can be derived from the deltas at a
subsequent (closer to output) node.

The overall algorithm is as follows: present pattern; feed forward, through
successive layers; backpropagate — updating weight; repeat.

An alternative is to determine the changes in weights as a result of presenting
all patterns: Aw;; = 37 Ajw;;. This so-called “off-line” updating of weights
is computationally more efficient but loses on the adaptivity of the overall ap-
proach.

Some further notes on the multilayer perceptron using the generalized delta
rule follow.

A local optimum set of weights may be arrived at. There is no guarantee of
arriving at a global optimum in weight space.

For the logistic activation function defined by

f;(nety;) = 1/(1 + exp €t)

where
Iletm' = E W;jOpi + 0]'
i

and the last term is a bias (or threshold, we have the following result:

f]"(netpj) = 0p; (1 —opj)
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For this function:

Opj = (tpj — 0pj)0p; (1 — 0p;)
for an output unit,
dpj = 0p;j (1 — 0p;) Z Opk Wi
k

for a hidden layer unit.

In practice one must use approximations to hard-limiting values of 0, 1; e.g.
0.1, 0.9 can be used. Otherwise, infinite weight values would be needed in the
above expression for f;(net,;).

It is found that symmetry breaking is necessary in order to get the back-
propagation algorithm started. This involves randomizing the initial arbitrary
weight values.

(nt1) _ n5pj0pi+aﬁwz(m

The presence of an additional momentum term, Awij y
often helps the convergence properties of the steepest descent iterative optimiza-
tion. This term takes the effect of previous steps into account. If the change in
the previous step was large, the momentum tends to continue to keep the delta
large.

The learning rate, n, should be small (0.7 or smaller). A larger learning rate
implies quicker learning, but possible oscillations. The additional momentum
term should have momentum rate « close to 1 (e.g. 0.9). On the one hand these
parameters should be set such that convergence is attained; on the other hand
they must allow some change to take place. It may be desired to allow a to
be small initially, and to increase it in the course of convergence. In sum, the
most appropriate choice of these parameters depends on the training data and
the network architecture.

The MLP architecture using the generalized delta rule can be very slow for
the following reasons. The compounding effect of sigmoids at successive levels
can lead to a very flat energy surface. Hence movement towards fixed points is
not easy. A second reason for slowness when using the generalized delta rule is
that weights tend to try together to attain the same value. This is unhelpful —
it would be better for weights to prioritize themselves when changing value. An
approach known as cascade correlation, due to Scott Fahlman, addresses this
by introducing weights one at a time.

The number of hidden layers in an MLP and the number of nodes in each
layer can vary for a given problem. In general, more nodes offer greater sensi-
tivity to the problem being solved, but also the risk of overfitting. The network
architecture which should be used in any particular problem cannot be speci-
fied in advance. A 3-layer network with the hidden layer containing, say, less
than 2m neurons, where m is the number of values in the input pattern, can be
suggested.

Other optimization approaches and a range of examples are considered in
Murtagh (1990/1991). Another short, comparative overview can be seen in
Murtagh (1994).

8.2.2 The Kohonen Self-Organizing Feature Map

The Kohonen self-organizing feature map (SOFM) with a regular grid output
representational or display space, involves determining vectors wy, such that
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inputs x; are parsimoniously summarized (clustering objective); and in addition
the vectors wy, are positioned in representational space so that similar vectors are
close (low-dimensional projection objective) in representation space: k, k', ke
{(r,s) |r=1,...,R;s=1...,S}

Clustering: Associate each x; with some one wy such that k = argmin ||
zi —wy ||

Low-Dimensional projection: || wy, — w} | < || wy —w,, || = || k—F || <

I k—k"|

By way of example, R = S = 10 and the output representation grid is a
regular, square one. The metric chosen for norm || . || is usually Euclidean,
and this will be assumed here. Without loss of generality, we can consider the
squared Euclidean distance whenever this is useful to us. Evidently z; € R™
and wy € R™ for some dimensionality, or cardinality of attribute-set, m.

Iterative algorithms for clustering are widely used, requiring an initial ran-
dom choice of values for wj, to be updated on the basis of presentation of input
vectors, x;. At each such update, the low-dimensional projection objective is
catered for by updating not just the so-called winner wy, but also neighbors
of wy, with respect to the representational space. The neighborhood is initially
chosen to be quite large (e.g. a 4 x 4 zone) and as the epochs proceed, is reduced
to 1 x 1 (i.e. no neighborhood). An epoch is the term used for a complete set
of presentations, and consequent updates, of the N input vectors. The result
obtained by the SOFM algorithm is sub-optimal, as also is the case usually
for clustering algorithms of this sort (k-means, partitioning) and quite often
for dimensionality-reduction methods (Sammon’s mapping). A range of studies
showing how well the SOFM method performs compared to these methods can
be found in Murtagh and Herndndez-Pajares (1995).

An example follows. We used a set of 45 astronomical spectra. These were of
the complex AGN (active galactic nucleus) object, NGC 4151, and were taken
with the small but very successful IUE (International Ultraviolet Explorer) satel-
lite which is still active in 1996 after nearly two decades of operation. We chose
a set of 45 spectra observed with the SWP spectral camera, with wavelengths
from 1191.2 A to approximately 1794.4 A, with values at 512 interval steps.
There were some minor discrepancies in the wavelength values, which we dis-
counted: an alternative would have been to interpolate flux values (vertical axis,
y) in order to have values at identical wavelength values (horizontal axis, x),
but we did not do this since the infrequent discrepancies were fractional parts
of the most common regular interval widths. Fig. 7.3 shows a sample of 20 of
these spectra. Fig. 7.4 shows a Kohonen map determined from a set of 45 such
spectra. Some nodes have a number of spectra associated with them, and this
is indicated. Some nodes have no associated spectrum and these are indicated
also.

8.3 Examples and Bibliography

8.3.1 Discrimination of Cosmic Ray Hits

Space-borne observatories are more likely to suffer from cosmic ray hits since
the Earth’s atmosphere cannot fully shield the detectors. The original Wide
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Node (1,5): 2 spectra

Node (1,4): 3 spectra

Node (1,1): 2 spectra
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Figure 8.4: Kohonen self-organizing map of 45 spectra.
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Field and Planetary Camera (WF/PC) detector of the Hubble Space Telescope
consisted of eight Texas Instruments CCD chips, four for each of the wide-
field camera and the planetary camera. Each CCD provided 800 x 800 pixel
frames, allowing a 1600 x 1600 image to be constructed for the WFC or for the
PC. Later versions of this detector differed somewhat in configuration. It was
estimated that in a 45-minute WF/PC exposure, 10 to 25% of all pixels would
be hit by a cosmic ray. At certain locations (in particular the South Atlantic
Anomaly region off the coast of Argentina) the effect could be much larger.
The extensive contamination due to such cosmic ray hits made it imperative
to remove them during data reduction. The best way to do this was to take
multiple perfectly aligned images, — “split mode” or repeated observations. The
overhead of observing time that this requires motivates the work to be described
here, which was based on a trainable classifier for object recognition from single
frames (Murtagh and Adorf, 1991; Murtagh, 1992).

For our purposes, cosmic rays can be divided into two classes, — high energy
primary, and low energy secondary particles. High energy cosmic rays pass
straight through the detector. On average in the HST WF /PC case, they caused
electrons to be deposited in two to three pixels.

A single event caused 80 to 100 electrons to be deposited per dimensions
of 15 x 15 times8um? in length, breadth, and thickness. One of the PC chips
was noticeably less thick. Depending on the traversal angle, between 8 and 20
times (say) 80 electrons was deposited in a pixel by high energy cosmic ray hits.
Diffusion along the path traversed by the cosmic ray also takes place, but was
sufficiently small to be ignored. A conversion factor of 7.5 brough the electron
counts to ADU (astronomical data units) used in the image data.

Secondary particles were produced by cosmic rays hitting the surrounding
spacecraft components. In particular the detector housing and “shielding” gave
rise to these low energy secondaries and the number of electrons deposited by
them could be very high.

This is a typical pattern recognition problem and the question becomes how
to set up a system. Two approaches seem feasible: freature- (or astronomical
object-) based; and image- (or pixel-) based. For a feature-based classifier one
would have to define a good set of features describing the image context in a
region of interest surrounding the pixel in question. A trainable classifier would
then be trained on these features together with the correct answers “CR” and
“non-CR” to be provided externally. An image-based classifier works directly on
the pixel data in the region of interest. Working directly on the data (the latter
case) off-loads the construction of a good feature set from us to the classifier.
Note though that it doesn’t obviate it. Simply, the pixel values are used as
features. This is the approach which we will describe here.

The method employed was to: (i) have cosmic ray hits on images flagged
by a human expert, providing “ground truth”; (ii) use this information to train
and test various classifiers; and (iii) apply the classifiers to other images.

Calibrated WFC images of the open cluster NGC 1850, with 10 seconds
exposure time, and without any preprocessing, were used in the experiments. A
colleagues (Jon Holtzman) marked the same 200 x 200 image on two different
occasions, separated by serveral months. It transpired that the first time 85
cosmic ray pixels were noted, and 102 the second time, with 74 common to both.
If the first marking is taken as ground truth, this corresponds to a redetection
rate of 87%, whereas if the second marking is regarded as ground truth then
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Figure 8.5: Performance of the classifier.

the redection rate drops to 73%.
We used two variants of a neural network method (training was by backprop

The rate of detection, RD, is an estimate of the probability of detection,
P(CReiass | CRieacn)- We wish to maximize RD. The rate of false alarms,
RFA, is an estimate of the false alarm probability, P(CReiqss | non-CRecqach-
We wish to minize RFA. The OC or operating characteristic diagram (also
called ROC, receiver operating characteristic, diagram) is the plot of RD, RFA
couples. Each point defines an operating point of a classifier (Melsa and Cohn,
1978). Within the basic cycle of train-test-apply, the results of training and
testing a statistical classifier are represented conventionally using an operating
characteristic diagram. Figure 7.5 shows the schema used for an OC diagram.

Figure 7.6 presents operating characteristics found for various methods. It
reflects the trade-off inherent in maximizing RD while minimizing RFA. The OC
diagram shown here could be used to implement a cosmic ray detection strategy.
For instance, the Neyman-Pearson strategy would hold the RFA value fixed, at
some upper acceptable limit, and find the best RD value corresponding to this;
or, given that the priors convey much information, one could use a maximum a

CRteach

nonCRteach
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Ideal result: 0,1

Figure 8.6: OC diagram for application of various trained classifiers (and two
non-statistical classifiers). Note that most of the results appear on an approxi-
mate parabolic curve in (RFA, RD)-space. 4
S

. . s 3
posteriori (MAP) strategy which would minimize the overall error.

7
8.3.2 Kohonen Map as a User Interface

An interesting and effe8tive use of the Kohonen self-organizing feature map is
as an interactive user interface. This has been done for about 20,000 documents
from the journals Astronomy and Astrophysics and The Astrophysical Journal.

A self-organizing map can be considered as a display grid where objects are
classified (Fig. 7.5). In such a grid, similar objects are located in the same
area. In the example (Fig. 7.5, right), a global classification is shown: the three
different, shapes are located in three different clusters. Furthermore the largest
objects are located towards the center of the grid, and each cluster is ordered:

MLP/CG, 9-9-2
MLP/CG, 9-12-2
. 1-NN

. 2-NNs

.3-NNs

. 5-NNs

. 9-NNs

. 15-NNs

. IRAF/cosmicrays
10. DAOPHOT 1l

AW

wo~N;OmO;

9 the largest dbjects are at one side of a cluster, smaller shapes are at the other
side.
A self—oréanizing map is constructed as follows.
10 e Each object is described by a vector. In the example, the vector has two
components: the first one corresponds to the number of angles, and the
i other one to the width of the area . . .
0.0 0.010

. 0.008
o Initia®P% vector is randor%‘%ssociated with eoac box (or node) of t?l%
grid.

e Each document is located in a box whose descriptive vector is the most
similar to the object’s vector.

e During an iterative learning process, the components of the nodes describ-
ing vectors are modified. The learning process produces the classification.
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Figure 8.7: Object locations. Left: before learning. Right: after learning.

Typical use of the self-organizing map in order to classify bibliographical
data was as follows. Our set of documents relates to the journal Astronomy
and Astrophysics in the time-interval 1994 onwards. The descriptive vector is
based on the journal keywords associated with each document. We eliminated
rare keywords (found in less than 5 documents). Finally, we used about 6500
documents described by 269 keywords.

Adaptation of the map included “wrap-around” so that neighbors at one
extremity would meet with another extremity of the map (reminiscent of the
map portraying a flattened sphere); and when there was a large number of
documents associated with a node, a subsidiary map was determined, leading
to a hierarchy of maps. A 15 x 15 grid was used for the principal map, and a
5 x 5 grid for the detailed maps.

Next we come to the graphical user interface. We display the trained self-
organizing map as a density map, which represents graphically the areas con-
taining papers of similar content and the number of documents in these areas.
The map is labeled to locate on it the themes dealt with (Fig. 7.6, top).

The user can select one node of the map (by clicking on the image) to obtain
information about the articles located at this node (the number of documents
and the keywords describing them appear on the right side of the interface)
(Fig. 7.6, bottom). The user can also access the detailed map, and/or the
article content (title, authors, abstract) and all the facilities provided by the
CDS bibliographical service (including a link to ADS and to the online full
paper in many cases).

The user interface allows one to select and display on the map only a part of
the database. This is used with keyword queries (only the documents containing
selected keywords are shown), or with an external list of documents (bibcode
queries: a “bibcode” is a 19-character standard for a document reference.

Fig. 7.7 gives an overall view of the system. It is based on imagemap and CGI
scripts. Hence our implementation is server-side and imagemap and CGI scripts.
Hence our implementation is server-side and compatible with any browser sup-
porting imagemaps.
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AsTRoNDMIgLES

(1994 — 1998)

CDS - Siméad - VizieR - Catalogues - Nomencinture - Bibiio -
StarPages - AstroWed

Astronomy & Astrophysics

Keyword query - Help

Principal map:
Node 120: 33 docwuments

Eeywords:

galaxy:kinematics and dynamics 21/33
stars: dynamics 10/33
stars:kinematics 7/33
galaxy:structure 6/33

galaxy:stars: content 6/33

chaotic phenomena 4/33

astrometry 3/33

Get Documents

Figure 8.8: Top:

http://simbad.u-strasbg.fr/A+A /map.pl

Maintained by P.POINCOT.
Please use the following e -mail address if youwant to leave s message:

E-mail:question@simbad.u—strashg.fr

the principal map.

Bottom:

Construct alocal map

=

the user interface.

235

URL



236

CHAPTER 8. NEURAL NETWORKS

Clickable Maps List of keywords ~ Keyword query List of references
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CGil scripts (Perl)

manage the human/machine interface

C program C program

Count keywords

C program

Get documents
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(using GD)

Figure 8.9: SOM-based system.
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Chapter 9

Conclusion: Strategies for
Analysing Data

In this chapter, we will summarize the options involved in applying methods
studied in earlier chapters. Whether a method will perform well in a practi-
cal situation will depend both on the geometrical/mathematical nature of the
method employed, and simultaneously on the quality and type of the data anal-
ysed. We will review the former first.

9.1 Objectives of Multivariate Methods

1. Principal Components Analysis:

Reducing the dimensionality of the parameter space to its inherent
dimensionality.

Thereby also eliminating “noise”, “cleaning” the data, and lessening
the volume of data.

Determining the most important linear combinations of the parame-
ters (variables).

Using these to determine linear combinations, and even quadratic,
logarithmic, and other, combinations.

Determining the important parameters present.
Determining “latent”, underlying variables present.

Visualizing the data by the selection of the most important planar
views of it.

Identification of groups of objects or of variables.

Identification of outliers or anomalous objects/variables.

2. Cluster Analysis:

Determining groups of objects, using some criterion.

Without prior knowledge of what groups are present, obtaining a
range of groupings and using this to assess the true group structure.
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3. Discriminant Analysis:

e Assessing the separability of known groups.
e Assigning objects to one of a number of known groups.

e Displaying the groups, optimally separating the known classes.
4. Correspondence Analysis:

e Identifying simultaneously groups of objects and variables.
e Determining “latent”, underlying variables.
e Determining the important variables present.

e Identifying outliers or anomalous objects/variables.
5. Principal Coordinates Analysis:

e Determining groups, and displaying.
6. Canonical Correlation Analysis:

e Assessing relationships of two groups of variables relating to the same
object population.

7. Regression Analysis:

e Fitting of a straight line to a set of points and assessing the signifi-
cance of anomalous points.

9.2 Types of Input Data

1. Principal Components Analysis implicitly uses Euclidean distances: real
valued data should therefore be used.

2. Clustering uses either distances or dissimilarities. Either may be calcu-
lated from given data. Clustering routines may accept the latter as input,
or may work on distance/dissimilarity input.

3. Most of the Discriminant Analysis methods looked at assume real valued
data.

4. Correspondence Analysis allows a wide range of data types. It is suitable
for data in the form of frequencies of occurence. It also is suitable for
data in a form of coding which associates response categories with all
possible data values (this latter is particularly interesting for diverse —
qualitative/real and categorical/integer — types of data).

5. Principal Coordinates Analysis assumes distances as input. Other multi-
dimensional scaling methods assume dissimilarities.

6. Canonical Correlation Analysis assumes real valued data.

7. Regression Analysis, as discussed in this book, assumes real valued data.
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9.3 Strategies of Analysis

The complimentary use of multivariate methods often offer powerful ways of
extracting information from the data. The following are some possibilities.

1. The use of clustering and of a display technique (Principal Components
Analysis, Correspondence Analysis, etc.) can give complimentary views
of the same data set, and can lead to more robust conclusions about the
data. The latter, for example, look at groupings relative to projections
onto axes, whilst the former looks at fully multidimensional grouping.

2. A Cluster Analysis can be carried out on the more informative first few
axes of a Principal Components Analysis.

3. A Principal Components Analysis can be used on large clusters resulting
from a Cluster Analysis in order to help interpret them.

4. Principal Components Analysis or Cluster Analysis may be used to define
groups, and Discriminant Analysis may be used to subsequently assess
them.

5. For complex data sets, a recoding can be carried out so that Correspon-
dence Analysis can be used; or distances/dissimilarities can be defined so
that clustering or multidimensional scaling can be employed.

6. Prior to analysis, the analyst should examine the correlation matrix in the
case of Principal Components Analysis, or the Burt table in the case of
Multiple Correspondence Analysis. All findings should be verified as far
as possible with respect to the given, original data.

9.4 Online Software Resources

Having seen a range of analysis methods in theory and practice, the user may
well wish to try to locate software to carry out some assessments quickly.

Major statistical packages not only contain an impressive range of meth-
ods, but — on many occasions — the user manuals contain an excellent succinct
overview of the capabilities of different methods. We assume that such user
manuals may be found in libraries, even if the software is not necessarily avail-
able on one’s local system.

Commercial packages includes SAS (Statistical Analysis System), widely
used in the context of business information systems. SPSS (Statistical Package
for the Social Sciences) is a major package used in a variety of fields. S-Plus
is a newer package, originating as the statistical language, S, in Bell Labs, and
marketed with a wide range of additional features as S-Plus by MathSoft Inc.
There is a wealth of software packages in the data mining area, often based on
methods for divisely constructing classification and decision trees (see Michie et
al., 199x, Hand, 1999). A package catering for cluster analysis is Clustan.

The most important general source of statistical programs (source code) on
the web is Statlib, located at Carnegie Mellon University. It has a wealth of
material including codes from Applied Statistics, newer Bayesian modeling and
other programs, and a wide range of programs for use in the S-Plus environment.
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An extensive resource list of programs and packages available for public
access on the web, with description, is maintained by F. Murtagh and is available
at the following address. This takes the form of statements made in newsgroup
postings or email messages.

http://astro.u-strasbg.fr/ ~fmurtagh/mda-sw/online-sw.html

This list is currently about 25 pages in length.

Among newsgroups of importance are KDD-Nuggets, for data mining, CLASS-
L for classification, the Connectionists list for neural networks, the Vision List
for image processing and computer vision, among others.
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Appendix A

Essential Mathematics

A.1 Introduction

This Appendix firstly gathers together some basic definitions, symbols and ter-
minology to do with random variables, random processes, and random fields; the
topics are chosen according to their applicability to pattern recognition, signal
processing, image processing and data compression. We present some funda-
mental theorems and definitions related to estimation, prediction, and general
analysis of data that are generated by random processes.

Secondly, basic definitions of linear algebra are covered. This mathematical
language, and tool-set, is invaluable for topics such as pattern recognition and
neural networks, image segmentation, and many other areas besides.

A.2 Random Variables, Signals and Fields

We start by presenting relevant definitions and theorems, and progress to iden-
tifying the types of (theoretical) processes that will be appropriate models for
our data. We identify properties of these processes that are relevant to pattern
recognition, signal processing, image processing and data compression.

A.2.1 Basic Probability and Random Variables
Events and Probability

See Rosenfeld and Kak (1982), and Mortensen (1987). Let there be a set of
outcomes to an experiment:

{wl,wz,W3, .. } =0

For each w; there is a probability p;:
pi >0 (A1)

Zpizl
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The simple definition of probability over outcomes is satisfactory for simple
applications, but for many applications we need to extend it to apply to subsets
of , called events.

Let there be subsets of ) called events: a general event is a, the set of all a
is A. We define a probability measure P on A; P is a number. P satisfies the
following axioms:

P(a) >0 (A.2)
P(Q) =1  (certain event)

aiﬂaj:(b VZ,]

ay,as,... are disjoint members of A and ) is the empty set
P(Up2,ar) = > Plag) (A.3)
k=1

Put simply, if a; and a; are disjoint,

P(ai U ak) = P(al) + P(ak)

A fourth axiom, which is really a corollary of these is sometimes included:
P(0) =0 (the impossible event)

Some Comments on Events and the Probability Measure

This subsection discusses some limitations on events and probabilities which
are theoretical and, in practice of little restriction. This subsection primarily
introduces some further terminology related to the previous subsection, and may
be skipped by the reader who prefers to continue with more central themes.

Some papers and texts, though of an applied nature, feel obliged to use the
terminology of rigorous probability theory; the purpose of this note is to dispel
some of the mystique of that terminology.

As in earlier and subsequent sections, (1 is the set of (elementary) outcomes;
and A is the set of subsets of {2 to which probabilities can be allocated.

Theoretically, it is not possible to assign probabilities to all subsets of (2,
but only to a class of these subsets that form a type of field called a Borel field.
This is of no practical consequence, but is an analytical neccessity arising (inter
alia) from the impossibility of assigning probabilities in the case where there
are infinitely many subsets of 2, and still have these probabilities satisfy the
axioms of probability (eqns. A.1, A.2 and A.3). In general, the powerset of (2 is
infinite, and the Borel field A which defines the restricted collection of subsets
which can be allocated a probability is not.

The term “probability measure” was used deliberately. Roughly speaking,
measure is a method of associating a number with a subset. Measure is a general
form of integration. For example, in many practical applications, the definition
of probability involves integration over a domain, e.g. integral between z; and
xo on the real line. The measurability of a function depends on its values, and
its domain.
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Example: A simple function, f(z) that is 1 between 0 and 1, and 0 elsewhere:
fl)y=1:0<z <1, f(z) =0: otherwise. Obviously,

1
/ flz)dz =1
0
i.e. the area is 1.

What then if the function drops to 0 at 0.5, but only at 0.57 Clearly the
integral (area) is still 1, and so on for many such zero values; i.e. the integral is
still defined, even though the function is not “well behaved” according to our
ordinary understanding. However, at some stage, when the number of zeros
become infinite, the area must decrease: at this stage (still roughly speaking)
the function becomes unmeasurable.

Incidentally, Borel measurability is a general criterion applied to functions.
It is claimed that the class of multilayer neural networks with three layers,
feedforward, and using a sigmoid activation function can be trained to represent
any Borel measurable function (see Hecht-Nielsen 1990, p. 122 for a discussion).

Random Variable

If, to every outcome, w, of an experiment, we assign a number, X (w), X is
called a random variable (r.v.). X is a function over the set Q = {wy,ws, ...} of
outcomes; if the range of X is the real numbers or some subset of them, X is a
continuous r.v.; if the range of X is some integer set, then X is a discrete r.v.

Distribution Function

Also called cumulative discribution function.
1. Of a continuous r.v.

FX(z)=P{—o00o< X <z}

Note: {..} is an event, so that, although X is a function over outcomes
(Q), FX is a function over events.

2. Of a discrete r.v.

If X can assume only a finite number of possible values z1,z2,...,Z,,
the probability of the matter can be adequately described by defining
a corresponding list of probabilities, pi,p2,...,pn- In this case FX is
shaped like a staircase. And, there is little need for the probability density
function (of a discrete r.v.) described below.

Probability Density Function
If FX (continuous) is differentiable,

fX(z) =d/dzFX(x)

is called the probability density function of the r.v. X. Note that the values of
fX are not probabilities; the values of F'X are. fX must be integrated to get
useful probability values, e.g.
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Pz < X <zp} = /I2 fX(x)dx

Expected Value of a Random Variable

1. Continuous

+oo
mX = E{X} = / zf X (z)dx

— 00

2. Discrete
mX = FX = Z Tip;

General interpretation of expected value: average over range of z, weighted
by probability of individual values.

In practice, it is usual that neither fX () nor p are known, and estimates
must be used: e.g. for the mean of a discrete random variable:

N
mX = Z zj/N
=1
where the z; are representative examples of the r.v., and where [V is large enough
that the sample, {z1,...,zy}, in turn is large enough that the frequency of
occurrence of x values properly represents the probabilities.

Random Vector

If the value assigned to an outcome, w, is vector valued,
X =[X1,...,Xy]

then X is called a random vector, i.e. X € R™.

Note: there is temptation to think of X as a sequence of random variables,
i.e. each X; generated by a separate outcome, w. Strictly, this is incorrect: in a
random vector each X;,i = 1...n, is generated by the same outcome. However,
there are no immediate detrimental consequences of making such a mistake.
And, on reflection, it may well be possible to “manufacture” a composite ex-
periment whose outcome is a set containing a number of ws.

A.2.2 Random Processes
Definition

A remark first: the adjective “stochastic” is entirely equivalent to “random”;
thus the frequently encountered term “stochastic process” is equivalent to “ran-
dom process”.

As already stated, a r.v. is arule for assigning a number, X, to each outcome,
w. Correspondingly, a random process is a rule for assigning, to each outcome,
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a function, X (s,w). s is called the parameter, or the index, of the random
process. Sometimes X (s,w) is written X;(w).

S is the set of admissable parameter values, s. In general, S is a subset of
the real line, R, or of R™. Commonly, S is the time axis, and X is a function of
time: X (t,w), or X;(w); this is why ¢ replaces s in most of the literature.

If S is one-dimensional, and discrete (i.e. the parameters can take only a
finite set of values), X is just a random vector, which is equivalent to a discrete
parameter random process. Note: a discrete state random process refers to one
in which the values of X are discrete.

Interpretations of a random process (one-dimensional) (see Papoulis, 1991,
p. 285):

1. A family (an ensemble in the literature) of functions, X (s,w).
2. A single function, X (s), i.e. w is fixed.

3. If s is fixed and w is variable, then X (s) is a random variable equal to the
state of the process at ‘time’ s.

4. If s and w are fixed, X (s) is a (plain) number.

Although we have used s in this section, we will bow to the preponderance
of usage, and use ¢ (for time) in later sections.

Random Fields

If S is two-dimensional or of greater dimensionality then X is called a ran-
dom field. Thus, if S = {z,y : ©0 < z < z1,90 < y < y1}, i.e. the do-
main commonly associated with a (continuous) image function, we have a ran-
dom field (as in e.g., Rosenfeld and Kak, p.38). Likewise for a discrete image,

S = {(371,:1/1), LR (mnayn)}'
First Order Statistics of Random Processes

Since z(t) is a random variable for a given ¢, we can extend the definition of
functions and expected values by including an extra parameter, s (or t).

1. Distribution function.

For a given ¢,

FX(z,t) =P-oco< X(t) <=z

2. Expected Value (Mean).

Continuous case.

+0o0

mX(t) = E{X(t)} = / z(t) fX (z,t)dx

o0

The discrete case is defined analogously.
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3. Probability density function, pdf,

0
X(z,t) = —FX(x,t
FX (1) = S FX (a1
(This is the partial derivative of F X (z,t) with respect to x.)

Second Order Statistics of Random Processes

1. Distribution function.

The second order distribution of the random process z(t) is the joint dis-
tribution

FXX(xlamQ;tlytz) = P{m(tl) < :L’l,l'(t2) < 1‘2}

2. Probability density function, pdf,

82
FXX(z,t) = MFXX(mlyﬂfz;thb)

And, of course, to fully describe the probability distribution of a random
process it is neccessary to extend to nth-order:

FXty,...,Xtp(x1,...,Zpit1, ..., t,) = P{le(ty) <z1,...,2(t,) <z}

FXty,...Xt, in the foregoing equation completely determines the statistical
properties of (t). The joint density function fXty,...Xt, is defined by analogy
with the above definition of pdf.

Autocorrelation

The autocorrelation of a random process x(t) is the expected value of the prod-
uct of the two random variables x(t1), x(t2):

Continuous.
Rxx(t1,t2) = E{x(t;)z(t2)}
+o00 +o00
= / / xlmgfxx(ml,mg;tl,tg)dxldmg
o0 o0
Discrete.

n n
Rxx (ti,tj) = Z Zmixjpij

Jj=1j=1

From its definition,

Rxx(t1,t2) = Rxx(t2,t1)

i.e. Rxx is symmetric.
Autocovariance.



A.2. RANDOM VARIABLES, SIGNALS AND FIELDS 249

Cxx(tr,te) = E{(z(t1) —mX(t1)).(x(t2) —mX(t2))}
= RXX(tly tg) - mX(tl)mX(t2)

Stationary Process

1. Strict-sense stationary (see Papoulis, 1991, p. 297).

Let t1,...t, be a set of points in T, likewise t; + to, . . . t,, + to; the corre-
sponding r.v.s are characterised by nth-order joint pdfs:

Xt .. Xta(x(tr), ..., x(tn);t1,t2, - - tn)

, and

th1 +t0,...,th+t0(.T(t1 +t0),...,$(tn+t0;t1 +t0,t2+t0,...tn+t0)

When these two functions are equal V tg, then the process is strict-sense
stationary, i.e. all statistical properties are invariant to shifts in the origin;
there is an analogous definition for random fields (e.g. images).

2. Wide-sense stationary.
Also called second-order stationary.

If the following two conditions are met, the process is called wide-sense
stationary:

mX(t) =mX

i.e. m is constant for all ¢, and,

Rxx(t1,t2) = Rxx(t1 — t2)

i.e. the autocorrelation depends only on (¢; — t2) (the displacement).

In the discrete case, wide-sense stationarity has the following important
consequence, when Rx x is expressed as a matrix:

To0 To1 To,n—1
T10 711 T1.n—1
Rxx = n
Tn-1,0 Tn—1,1 -« o« o Tp_1n-1

from which we get, using relations established previously:

To 1 ro ... ... Tnp-1

r1 To 1 I )
Rxx =

n—1 Tn—2 To
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i.e. Rxx is a circulant matrix — each row is merely the previous row
rotated by one position. Sets of linear simultaneous equations that are
characterised by a circulant matrix (or more generally a Toeplitz matrix)
can be solved using fast and recursive algorithms — such solution is required
in prediction.

Another property of Toeplitz matrices is that they are diagonalised by the
Discrete Fourier Transform — an important consequence of this fact is that
the DFT is equivalent to the Karhunen-Loeéve Transform for such data (the
KL transform is an important transform in lossy data compression).

Incidentally, discrete convolution can be expressed as multiplication by
a circulant matrix — the delayed impulse response weights form the rows;
therefore the matrix may be disgonalised by the DFT, and this is why con-
volution decomposes into multiplication in the Discrete Fourier domain.

To read further, see Jain (1989), Pratt (1991), and Press et al. (1992).

Ergodic Processes

The statistics defined in the previous sections on random processes are defined
by taking the expectation, E{.}, over the ensemble of xs; now, we rarely have
access to a sufficiently large ensemble of xs that we can estimate pdfs; indeed,
practically, we rarely have more than one sample, x. If the process is ergodic,
i.e. roughly speaking, we can replace expectations over the ensemble with time
averages over one sample, we have a practical method by which to estimate
statistics.

Of course, a process first has to be stationary, so that these time averages
do not vary with time.

Thus, the mean of a (discrete) ergodic process:

mXi = E’{.Tl}

can be estimated

N
mX =1/N>
i=1

Another example is the estimate of autocorrelation:

N
Rxx(k) = l/NZa:(i + k)x (i)

As with stationarity, ergodicity can be wide-sense (e.g. ergodic in the mean
(first-order), ergodic in autocorrelation (second-order) etc., or strict-sense, in
which the ergodicity is defined in terms of the probability functions.

Markov Process

A Markov process is a random process in which the probability of achieving
any future state depends only on the present, and not on the past. As with
stationarity and ergodicity, Markov processes can be defined as strict sense or
wide sense.
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The definition of a strict-sense Markov process can be given more formally,
in terms of conditional pdfs as follows:

[Xtng1, Xty oo, Xty | Xty oo Xt (T 1, g2 - T | T1, 000, To)

= fXtm, - Xt | Xt (Tmt1,-- -, Zn | Tm)

where ¢, = present time, and | denotes conditional (probability).

In a strict-sense Markov process, the probabilities of states at t,,4+1 ... de-
pend only on the state at ¢,,, (present) and not on t,,,_1, ty—2, . . . and backwards.

Clearly this has strong implications for the usage of past states in predicting
the future.

In an image context (see Rosenfeld and Kak p. 312), we have Markov random
fields; in that context Markov means that the probability of the state (greylevel)
of a pixel depends only on the states of its eight neighbours.

Gaussian Process

The random process, X, is called a Gaussian process, provided that for any fi-
nite collection of times (¢, to, . .., t,) the vector of states X = (zt1, xta, ..., xty)
has the joint pdf:

1 n 1 1 _
FX (@) = (o) Cxx | g)exp{— (@ —m)" Ol (z —m))
where C'xx is the autocovariance, m = E{z;} and | . | denotes determinant.

Gaussian processes are good models for many natural random processes.
In addition, they are analytically convenient, Additionally their pdf is totally
determined by first and second order statistics (mean and autocovariance, re-
spectively).

A.2.3 Further Background Reading

1. Chung, K.L. 1968. A Course in Probability Theory. New York: Harcourt,
Brace and World.

2. Feller, W. 1966. An Introduction to Probability Theory and its Applica-
tions. Vol II. New York: John Wiley and Sons.

3. Hecht-Nielsen R. 1990. Neurocomputing. Reading, Mass: Addison- Wes-
ley.

4. A K. Jain. 1989. Fundamentals of Digital Image Processing. Englewood
Cliffs, NJ: Prentice-Hall Int.

5. Kosko, B. 1992. Neural Networks and Fuzzy Systems. Englewood Cliffs,
NJ: Prentice-Hall Int., 1992

6. Mortensen R.E. 1987. Random Signals and Systems. New York: John
Wiley and Sons.

7. Papoulis A. 1991. Probability, Random Variables and Stochastic Pro-
cesses. 3rd ed. New York: McGraw-Hill.



252

10.

11.

12.

13.

APPENDIX A. ESSENTIAL MATHEMATICS

. W.K. Pratt. 1991. Digital Image Processing. New York: Wiley- Inter-

science.

. W.H. Press, S.A. Teukolsky, W.T. Vetterling,and B.P. Flannery. 1992.

Numerical Recipes in C. Cambridge, U.K. : Cambridge University Press.

Proakis J.G. 1989. Digital Communications. 2nd ed. New York: McGraw-
Hill.

Rosenfeld A. and A.C. Kak. 1982. Digital Picture Processing. 2nd ed.
London: Academic Press. (2 Volumes).

Thomasian, A.J. 1969. The Structure of Probability Theory with Appli-
cations. New York: McGraw-Hill.

Widrow, B., and Lehr, M.A. 1990. 30 Years of Adaptive Neural Networks.
Proceedings of the IEEE. 78, No. 9.

A.3 Linear Algebra

A.3.1 Basic Definitions

Vectors and Matrices

Pattern or measurement vector before any processing:

T = (mg,ml,...mi,...xp_l)T

a p X 1 column vector.
After transformation:

y= (yanla---yi:---yp—l)T

a ¢ X 1 column vector.
A matrix transformation is defined by an equation of the form:

y = Ax

wit respective dimensionalities: ¢ X 1,¢ X p, and p x 1.

Multivariate Statistics

T = (mg,ml,...mi,...xp_l)T

a p x 1 feature vector.
Mean vector:

m = (mg,ml,...mi,...mp_l)T

= E{z}

where FE{.} denotes expectation.



A.3. LINEAR ALGEBRA 253

Normally we estimate expected values using the sample average, e.g. mean
m is estimated using the average of x computed over a sample of n values,

generically called z;:

1 n
m=— Z ZT;
n i=1
Autocorrelation matrix:
R = E{z2"}

= [rij]

where
rij = B{ziz;}

the expected value of the product of the ith and jth components of z.
Normally we will use the sample autocorrelation matrix, i.e. R estimated

from a sample of n vectors, z;,7 = 1...n,

n
E LT
i=1

It is sometimes convenient to write the autocorrelation completely in matrix
notation; let X be the p x n matrix formed by arranging the n z; values as

S|

R=

columns
X =[z122...%i...2]

a p X n matrix, and so

h=lxxT
n

Covariance matrix:

S = B{(z —m)(z—m)"}

= [s4;]
where
sij = E{(z; —m;)(xz; —mj)}
the expected value of the product of the ith and jth components of the deviation

of z from its mean.
The diagonal elements s; of S are the variances of the element x;.

It is easy to verify that:
S =R—-mm"
Also, there is a matrix representation, analogous to the autocorrelation

above.
If ' = (x —m), i.e. the pattern vector reduced to zero mean, and
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of dimensions p X n, then the sample covariance can be rewritten as

g=lxxm
n
Multivariate Gaussian Random Vectors:
Multivariate vectors generated by a multivariate random process follow the
probability density function (pdf):

1 n _
fol2) = (5m5)(1 S ] 5 —)exp{-—(f-— m)"S™H (z —m)}
where S is the covariance matrix, m = E{z} and | . | denotes determinant.

Gaussian processes are good models for many natural random processes. In
addition, they are analytically convenient, since their pdf is totally determined
by first and second order statistics (mean and covariance, respectively).

Statistics after Transformation:

If we transform into a feature space y = Az, the mean, autocorrelation, and
covariance statistics are transformed as follows:

Mean: m' = Am

Autocorrelation: R’ = ARAT

Covariance: S’ = ASAT

Prior Probabilities:

Many pattern recognition algorithms use (estimates of) the relative fre-
quency of occurrence of the various classes in the population; these are called
prior, or a priori, probabilities, because these probabilities are known before any
measurement is made.

Prior probabilities are denoted P, P> etc. for P(class 1) etc.

Contrast posterior, or a posteriori probabilities, which are the probabilities
of the classes after the measurements have been taken into account.

A.3.2 Linear Simultaneous Equations

Eqn. A4 is a system of linear (simultaneous) equations.

Y1 = 31’1 + 11’2 (A4)
Y2 = 2x1 + 420

Practically, Eqn. A.4 could express the following:

Price of an apple = z, price of an orange = x2 (both unknown). Person
A buys 3 oranges, and 1 apple and the total bill is 5p (y;). Person B buys 2
oranges, 4 apples and the total bill is 10p (y2).

Question: What is x1, the price of apples, and 2, the price of oranges?

(1) 5=1x1 + 3x»
(].) — Ty = —5+ 311
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Substitute into (2):

10 = 45[71 + 2(—5 + 3371)

10 = 10z; — 10
20 = 102y
2= T1
Now, substitute z; = 2 into (1):
5=2+3x>
3= 31’2
Ty = 1

The simultaneous equations A.4 can be written in matrix form as follows:

y = Ax

. . . 1 . . .
where y is a two-dimensional vector, y = ( z ) x is a two-dimensional vector,
2

1 3
4 2 )7

Note: a vector is simply an array of numbers. A vector with n numbers is
called an n-dimensional vector; such a vector represents a point in n-dimensional
space. Don’t try to visualise n > 3. Just think of the n numbers grouped
together.

In two- or three-dimensions it is possible to visualise a vector as a line with
an arrow-head — the arrow indicates the path between the origin (0,0) and the
point (z,y) that the vector represents; again, for our purposes this view has
limited use.

Generally, a system of m equations, in n variables,

T = ( il ) and A is a 2 row X 2 column matrix, A =
2

Y1 = G11T1 + G122 - . - + G1pTp

Y2 = 2121 + A22%2 ... + A2nTn
Yr = Qr1T1 + Qr2Z2 ... + Qpele ... + QrpTn

Ym = Am1T1 + @22 . .. + Ayp Ty

can be written in matrix form as,

y=Az (A.5)
where y is an m-dimensional vector

Y1
Y2

Ym
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z is an n-dimensional vector,

T

T2
Tr=

Tm

and A is an m-row X n-column matrix
aii @12 Q1n
a1 @22 Q2p
A=
a/T‘C

am1 Am2 -~ Amn

That is, the matrix A is a rectangular array of numbers whose element in row
r, column c is a,.. The matrix A is said to be m x n, i.e. m rows, n columns.

Vectors can be considered as specialisations of matrices, i.e. matrices with
only one column. Thus z ism x 1, and y is n x 1.

Eqns. A.4 or A.5 can be interpreted as the definition of a function which
takes n arguments (z1,2s..z,) and returns m variables (y1,¥y2...Ym). Such a
function is also called a transformation: it transforms n-tuples of real numbers
to m-tuples of real numbers.

Eqn. A.5 is a linear transformation because there are no terms in z2 or
higher, only in z,.

A.3.3 Basic Matrix Operations
Matrix Multiplication

We may multiply two matrices A, m X n, and B,q X p, as long as n = q. Such
a multiplication produces an m X p result. Thus,

c = A B
m X p mxmn nxp

(A.6)

Method: The element at the rth row and cth column of C' is the product
(dot or inner or scalar product) of the rth row vector of A with the cth column
vector of B.

Pictorially:
n p p
[-—-—->
| A B = C
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Thus,

bii b2
B =
( bar  boo >
= ( a11bi1 + ai2b21  ai1bia + a12bae )

a21b11 + a22b21  az1b12 + azabao

Example Consider Eqn. A.5, y = Az. Thus the product of A(m x n) and
z(n x 1)
Y1 =a11T1 + a12%2 ... + QipTn

(rowl coll = product of 1st row of A with 1st column of z) etc.

The product is (m x n) x (n X 1) so the result is (m x 1), i.e. y.

Example Apply the transformation given by

31

2 4

(1

7\ 2

Consider scaling and rotation in computer graphics. Here the vectors are:

(7)

and the output, transformed, vector is:

(7)

The scaling transformation takes the form:

to

Scaling and Rotation

T =xS,
y' =ySy

That is, z is expanded (S, > 1) or contracted (S, < 1) to give z’; ditto y-axis.
Sy and S, are called scaling factors. The matrix is

S, 0
0 S,
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The following transformation rotates (z,y) a clockwise angle B about the origin
(0,0):

x' = xcos B+ ysinB
y' = —xsin B+ ycos B

The matrix is

cos B sin B
R(B) = ( —sinB cosB ) (A7)

Example (a) Rotate the point

0.707
0.707
clockwise by 45 degrees.

(Note: sin45 = 0.707 = 1/v/2 = cos 45;0.707 x 0.707 = 0.5 .)

(b) Rotate the point

clockwise by 90 degrees.

Example What is the effect of applying the rotation matrix twice? That is,

what is

R(B)R(B) ( ; )

The following formulae may be useful:
sin(a + b) = sin(a) cos(b) + cos(a) sin(b)
cos(a + b) = cos(a) cos(b) — sin(a) sin(b)

Example What is the effect of applying the negative rotation, —B, to a point
that has already been rotated by +B. That is, what is

R(-B)R(B) < ;““ )

Multiplication by a Scalar

c a1 Qai2 _ caip Cai12
a1  a22 Caz1 Caz3
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Addition of Matrices

ail Q12 n b1 b1z _( ot bi1 a1z + b1z
a1 Q22 ba1 b2 a1 +ba1  azy + ba
The matrices must be the same size (dimensions).

Inverses of Matrices

Only for square matrices (m = n).
Consider Eqn. A .4:

Y1 = 3z1 + lzo
Y2 = 2z1 + 4x2

i.e. y = Ax where

Apply this to

Get:

ym=31+12=5
yo = 2.1 +4.2 = 10
What if you know y = (5,10) and want to retrieve z = (z1,22)?

Answer: Apply the inverse transformation to y. That is, multiply y by the
inverse of the matrix.

r=A"ly

In the case of a 2 x 2 matrix

—az1 a11

1 a —a
—1 22 12

where the determinant of the array, A4, is | A |= ajja22 — a12a21
If | A|is zero, then A is not invertible, it is singular.
Thus for
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we have | A|=3x4-2x1=10so0

Al = (1/10)( _;1 _?1)

Therefore, apply A~ to ( 1(5) >

)(1?)):(

0.4
-0.2

which is what we started off with, i.e.

~

-0.1
0.3

5x04+10x —0.1
5x —0.2+10x0.3

)
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)

04 -0.1
-0.2 0.3

)= ()

Note: in solving the linear equation system above for the price of apples and
oranges, we were actually doing something that is very similar to inverting the

matrix

3
i (8
A.3.4 Particular Matrices

Diagonal Matrices

1)

The scaling faactor matrix mentioned above, in dealing with rotation and scal-

ing,

Sz
A_< ’

0
Sy

is diagonal, i.e. the only non-zero elements are on the diagonal.

The inverse of a diagonal matrix

ail 0
0 a2

(M e )

is

Transpose of a Matrix (A?)

Only for square matrices. If

then

-

i.e. replace column 1 with row 1 etc.
The transpose is often written as A?
transpose”.

or AT or A'. It is pronounced “A-
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The Identity Matrix

=0 7)

i.e. produces no transformation effect. Thus, TA = A

Note: If AB =1 then B= A1

Orthogonal Matrix

A matrix which satisfies the property:
AAt =T

i.e. the transpose of the matrix is its inverse.
Another way of viewing this is:

261

For each row of the matrix (a,1ay2....a,y,), the dot product with itself is 1,

and with all other rows 0. ILe.

S Greap. = lforr=p
0 otherwise

A.3.5 Complex Numbers

A complex number is simply a convenient way of representing the pair of num-

bers that represent the coordinates (z,y) of points in a plane,

2=z +jy

where j = v/—1.

In many ways, a complex number is like a two-dimensional vector.

The modulus of the complex number (which may be interpreted as the dis-

tance between the origin and (z,y) ) is given by:

lz|=|z+jy|= V(exz+yxy)

i.e. using Pythagoras’ Theorem

The angle, or argument, which may be interpreted as the angle between the

line (0,0) to (z,y) and the x-axis, is given by:

argz = arctany/x

i.e. the angle whose tangent (opposite/adjacent) is y/x.

Addition of complex numbers is as follows: If

z=x+jy, w=u+jv

then

ztw=z+u+jly+v)

A graphical interpretation of addition of complex numbers is,

— draw a line from (0,0) to (z,y),

— using (z,y) as the origin, draw a line to (u,v),

— the point reached is (z + u,y + v).
Le. vector addition.
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Multiplication of complex numbers is as follows:
If

z=x+jy, w=u+jv

then
zaw = (z+jy).(u+jv) =zu+jjyv+j(yu+zv)

We use j.j = —1 (i.e.//—1y/—1 = —1) This gives:
zaw = (z.u —yv) +j.(yu+ z0)

Note: if complex numbers have zero imaginary parts, the rules given here
collapse to the rules of normal arithmetic for real numbers.

Example Verify the last statement, i.e. set y,v = 0 in addition and multipli-
cation of complex numbers.

The complex conjugate of a complex number, ¢ = a + jb is
c*=a—jb

Complex Numbers and Matrices

Matrices and vectors can contain complex numbers. The rules for matrix addi-
tion, multiplication, given above, all apply; we just replace the normal addition,
multiplication with the complex versions given in the previous section dealing
with “Complex Numbers”.

A.3.6 Further Matrix and Vector Operations
Vector Inner (Dot) Product

Let vector
T
T2

Tn

i.e. = (z1,%2,...7,)" (t denotes transpose), and vector y = (y1,¥2,...yn):
The inner product (dot product, scalar product) of x and y is the matrix
product

ry

Dimensions: 1 x 1,1 xn,n x 1

This is the same as:
n
zy' = Z TiYi
=1

If the dot product of two vectors is 0, they are said to be orthogonal.
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Vector Addition

Three n x 1 vectors x,y, z:

z=x+y
with
z1 1+
29 T2 + Yo
Zn Tp + Yn

Distance between Vectors

Considering n-dimensional vectors as points in n-dimensional space, we can talk
about the distance, d, between vectors z and y. The following is the squared
distance:

A (z,y) = (21 —y1)> + (22 —92)* + .. + (Tn — Yn)?

or
n

&*(z,y) = > (zi —y;)° (A.9)

i=1

Example Determine the Euclidean distance between the points (1,1), (1,3).

* (1,3)

dim 2 1 * (1,1)

)
—+ — + — + —

et e s St
1 2 3 4 dim 1

d=(1-12+(1-32=/0+4=2

Length or Magnitude of a Vector

Considering now an n-dimensional vector as the line joining the origin to its
point in n-dimensional space, we can talk about the length — or, more usually,
the magnitude — of a vector as the distance between the vectors z and the origin
(0,0,0...):

o 1= V(@)

Example Verify that the magnitude of the vector (1,0) is 1.
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Example Verify that the magnitude of the vector (0,2) is 2.

Example Verify that the magnitude of the vector (1,1) is 1.414; i.e. v/2. Note
that it is not 1, as you can easily verify by sketching.

Normalized or Unit Length Vectors

Quite often we are just interested in the relative directions of vectors and, for
easier comparison, we would like to reduce all vectors to unity magnitude — this
is called normalization.

Normalization is performed by the following (cf. scaling dealt with above)
transformation:

:L’ir:xi/|1’|

where x; is the ith component of the normalised vector, x; is the ith component
of the original vector, and | z | is the magnitude of the original vector.

Example Normalize the vector (0,1); Answer: (0,1).

Example (a) Normalize the vector (0,2); Answer: (0,1) (b) Verify, with a dia-
gram, that normalization has retained the direction of the original vector.

Example (a) Normalize the vector (1,1); Answer: (0.707,0.707).
(b) Verify.
Answer:

0.707 = 1/v2

magnitude = /27 + 23 = \/1/\/52 + 1/\/52 =1/2+1/2=1

Example Verify that, in two dimensions, all unit vectors lie on the unit circle
(a circle with centre at the origin (0,0) and with radius 1).

Template Matching of Unit Vectors

Quite often we wish to compare two vectors, z and y (assume they have already
been normalized).
One way is to compute the distance between them.

n
d= \/ZZ(% - vi)?)
i=1
Then we can use the common sense rule:

Small distance => similar
Big distance = different

Alternatively, we can compute how well the corresponding components corre-

late, i.e. perform a template matching by multiplying corresponding components
and summing (i.e. a dot product):

n
c= E Z;iYi
i=1
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Then we can use the rule:

Big correlation value (¢) = similar

Small = different

(See section 3.2.13: if ¢ = 0 the two vectors are orthogonal.)

Mazimizing correlation is equivalent to minimizing distance.

Intuitive proof (two-dimensions):
We expand for the case of 2-dimensions:

d=((x1 —y1)* + (z2 — y2)°) = (@] + 47 — 2z151 + 25 + Y3 — 2720>)

= (22 + 22 + y +y2 — 2z101 — 22212)

2 2 2
d= me +Zyi2 - QZwiyi
=1 =1 =1

Since x and y are normalized to unit magnitude:

2 2
TSI
i=1 i=1
Thus,
d=-2(c—-1)

When the vectors are the same, x = y, so that

C:Z.Tiyi :inxi =1

since x is unit magnitude. This is the highest possible value that ¢ can attain (i.e.
when the vectors are the same, the components are completely matched/correlated).

A.3.7 Vector Spaces
Vectors in Neural Networks and Pattern Recognition

Many approaches to automatic pattern recognition (especially neural networks)
use representations of patterns as arrays of numbers (vectors).

The recognition process often involves finding the “most similar”, of a set of
stored patterns, to an unknown pattern.

Obviously, the distance is clearly a good measure of similarity: small dis-
tance large similarity; clearly also, template matching or correlation is intuitively
appealing. We have shown that they both give the same result.

Neural Networks:

The computation performed by a single neuron, as used in artificial neural
networks, is simply the dot product between the input excitations x; and the
weights, w;,
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n
sum = E T;W;
i=1

followed by passing sum through some threshold function, such as:

output = 1lifsum >T

= 0 otherwise
Note the similarity with template matching.

Example The Figure below shows a letter ‘C’ in a small (3 x 3) part of a digital
image (a digital picture). A digital picture is represented by brightness
numbers (pixels) for each picture point.

Now, represent the nine pixel values as elements of a vector. Assuming the
character is white-on-black and that bright (filled in with ‘*’) corresponds
to ‘1’, and dark to ‘0’, the components of the vector corresponding to the
‘C’ are:

1 = 1,5[72 :1,373 = 1,374 = 1,375 :0,376 :0,377: 1,5[78 = 1,5[79 =1
Pixel representation:

to—— et ————+
| skkoske sk | kokookok | kokkok |
| skkoske sk | kokookok | kokkok |
ot ————+
4 |x*x%x|5 |6 |
| kK | | |
to—— et ————+
| skkoske sk | kokookok | kokkok |
EXITIETITIEIEIE]
ot ————+
7 8 9

A Letter ’C’

The letter ‘T’ would give a different observation vector:

’T: 1,1,1, 0,1,0, 0,1,0
’0°: 1,1,1, 1,0,1, 1,1,1
’C’: 1,1,1, 1,0,0 1,1,1

etc.
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Linear Independence of Vectors

Two vectors a;, aj,

ai:(ailaai2;---;aip)

a; = (G,j1,aj2, .. .,ajp)

are linearly dependent if one can be written as a scalar product of the other,

a; = caj = (caji,caja,...,ca;p)

i.e. the vectors differ only by a scale factor, ¢, that is applied to all elements.

In such a case, the directions of the vectors are the same; only their length
differs by the scaing factor c.

If we have

n
b= E c]-aj
j=1

then b is a linear combination of the a;s and is linearly dependent on them.

Normally, as in the next section (rank) we are interested in the linear in-
dependence of vectors formed by rows of a matrix. If we have one row of a
matrix that is linearly dependent on (some — or all) the others, this means
that the simultaneous equation associated with that row contributes no new
information.

Rank of a Matrix

Given a ¢g-row X p-column matrix, A

air a2 Q1p
a21  a22 a2
A= P
. Ape
Qg1 Qg2 ... e Qgp

the rank of A is the number of linearly independent rows in it.

If p = ¢ the matrix is square, and we may need to invert it, it will only
invert if all the rows are linearly independent; otherwise, the matrix is singular
— non-invertable. One simple way of viewing this problem is that, for a system
of simultaneous equations to be solvable, we need p equations in p unknowns;
if one, or more, of the equations is linearly dependent on the others, this equa-
tion contributes no new information, i.e. we effectively have only p — 1 ‘useful’
equations, and the system is unsolvable — its rank is p — 1.

In pattern recognition and estimation, the incidence of singular or nearly
singular matrices is insidious and common, e.g. a common source is taking
reading for a dependent variable, y, say, for the same, or nearly the same values
of the independent variable, z. It can lead to nonsense results — analogous to
what happens close to divide by 0 in floating point arithmetic.
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Eigenvalues and Eigenvectors

For any positive-definite matrix R, there exists a unitary matrix U that satisfies
the following equation:

UTRU = A
where

A O 0 0

0 X O 0

A is a diagonal matrix containing the eigenvalues of R, and

Ui
U2

U=

Uj

Up

is the matrix formed by the eigenvectors, u;, of R.
Another equation governing eigenvalues and eigenvectors is

Rui = )\iui

or, in matrix form, showing all the eigenvectors and eigenvalues:

RU =UA
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