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Correspondence Analysis

Topics:

Basics, and preliminary example (student exam scores)
Metrics, clouds of points, masses, inertia

Factors, decomposition of inertia, contributions, dual spaces
Hierarchical agglomerative clustering

Minimum variance criterion

Examples in depth (ppt file)

Java application: http://astro.u-strasbg.fr/~fmurtagh/mda-sw
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e Observations x variables matrix.

e Through display and through quantitative measures, investigate relationships
between observations, and between variables.

e Similar in these objectives to principal components analysis, multidimensional
scaling, Kohonen self-organizing feature map, and others.

e Correspondence analysis is often used in conjunction with clustering.

e Input data, and input data coding, are the major issues which distinguish
correspondence analysis from other algorithmically-similar (or alternative
algorithmic) methods.

N K
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Scores 5 students in 6 subjects
CSc CPg CGr CNw DbM SwE
A 54 55 31 36 46 40
B 35 56 20 20 49 45
cC 47 73 39 30 48 57
D 54 72 33 42 57 21
E 18 24 11 14 19 7
CSc CPg CGr CNw DbM SwE
mean profile: .18 .24 .12 .12 .19 .15
profile of D: .19 .26 .12 .15 .20 .08
profile of E: .19 .26 .12 .15 .20 .08
Scores (out of 100) of 5 students, A-E, in 6 subjects. Subjects: csc: Computer
Science Proficiency, CPg: Computer Programming, CGr: Computer Graphics, CNw:

6039:2 Networks, DbM: Database Management, SwE: Software Engineering. K
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Scores 5 students in 6 subjects (Cont’d.)

e Correspondence analysis highlights the similarities and the differences in the
profiles.

e Note that all the scores of D and E are in the same proportion (E’s scores are
one-third those of D).

e Note also that E has the lowest scores both in absolute and relative terms in all
the subjects.

e D and E have identical profiles: without data coding they would be located at
the same location in the output display.

e Both D and E show a positive association with CNw (computer networks) and a
negative association with Swk (software engineering) because in comparison
with the mean profile, D and E have, in their profile, a relatively larger

/ component of CNw and a relatively smaller component of SwE. K
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We need to clearly differentiate between the profiles of D and E, which we do
by doubling the data.

Doubling: we attribute two scores per subject instead of a single score. The
“score awarded”, k(7, j7), is equal to the initial score. The “score not
awarded”, k(4,77 ), is equal to its complement, i.e., 100 — k(7,5 7).

Lever principle: a “+4” variable and its corresponding “—” variable lie on the
opposite sides of the origin and collinear with it.

And: if the mass of the profile of jT is greater than the mass of the profile of j
(which means that the average score for the subject 5 was greater than 50 out of
100), the point 5 is closer to the origin than 5.

We will find that except in CPg, the average score of the students was below 50

in all the subjects.
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CSc+

54
35
477
54
18

M O Q W »

N

CSc-

46
65
53
46
82

CPg+ CPg- CGr+ CGr-

55
56
73
72
24

45
44
27
28
76

31
20
39
33
11

69
80
61
67
89

CNw+ CNw-
36 64
20 80
30 70
42 58
14 86

Data coding: Doubling

DbM+ DbM- SwE+ Swl

46
49
48
57
19

54
51
52
43
81

40
45
57
21

7

Doubled table of scores derived from previous table. Note: all rows now have the
same total.

~

60
55
43
79
93
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Factor 1 (77% inertia)
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Metrics '

The notion of distance is crucial, since we want to investigate relationships
between observations and/or variables.

Recall: x = {3,4,1,2},y = {1, 3,0, 1}, then: scalar product
(,y) =(y,x) =2’y =2y’ =3x14+4x3+1x0+2x1.

Euclidean norm: [|z||* =3 x3+4 x4+ 1x1+2 x 2.

Euclidean distance: d(z,y) = ||z — y||. The squared Euclidean distance is:
3—1+4-3+1-0+2-1

Orthogonality: z is orthogonal to y if (x,y) = 0.

Distance is symmetric (d(z,y) = d(y, x)), positive (d(x,y) > 0), and definite

(d(z,y) =0=z =1y) K




orrespondence Analysis — F Murtagh

Metrics (cont’d.)

e Any symmetric, positive, definite matrix M defines a generalized Euclidean
space. Scalar product is (x, y)ar = =’ My, normis ||z||* = =’ Mz, and
Euclidean distance is d(z, y) = ||z — y]| .

e Classical case: M = I, the identity matrix.

e Normalization to unit variance: M is diagonal matrix with sth diagonal term
1/07.

e Mahalanobis distance: M is inverse variance-covariance matrix.

e Next topic: Scalar product defines orthogonal projection.
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Metrics (cont’d.)

e Projected value, projection, coordinate: 1 = (' Mu/u'Mu)u. Here z; and u
are both vectors.

e Norm of vector z1 = (&' Mu/u' Mu)||ul| = (2" Mu)/||ul|.

e The quantity (z' Mwu)/(]|z||||«|| can be interpreted as the cosine of the angle a
between vectors x and w.

+ X

/
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Metrics (cont’d.)

e Consider the case of centred n-valued coordinates or variables, z;.
e The sum of variable vectors is a constant, proportional to the mean variable.

e Therefore the centred vectors lie on a hyperplane H, or a sub-space, of
dimension n — 1.

e Consider a probability distribution p defined on I, i.e. for all 7 we have p; > 0
(note: > 0 to avoid inconvenience of lower dim. subspace) and MM.@LS = 1.

the p terms.

o Have: ' M,z =) _, pix; = var(z); and
.&.C&BNQ — Mu&mw PiZiYi = OO<A.&.V m\v

e Covariance matrix: M, diagonal matrix with diagonal elements consisting of

k

11



orrespondence Analysis — F Murtagh

N

Metrics (cont’d.)

Use of metric M,,, on I is associated with the following x* distance relative to

centre p;.

This new distance is a generalized Euclidean M; ,,,, metric.
Let both p; and r; be probability densities.

Then: ||prs — qisll2,, = Mu?bm;u@& — pip;)*/pip;.

Link with x? statistic: let p;s be a data table of probabilities derived from
frequencies or counts. pry = {pijli € 1,5 € J}.

Marginals of this table are p;y and p ;. Consider independence of effects where

the data table is g; 7 = prpyJ.

Then the x* distance of centre ¢;; between the densities pr; and g7 is
lprs —arsllar, = D2 5yerx s Pis — pips)* /.

k

12
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e With the coefficient \/n, this is the quantity which can be assessed with a x°
test with n — 1 degrees of freedom.

e The x* distance is used in correspondence analysis.

e Clearly, under appropriate circumstances (when p; = py = constant) then it
becomes a classical Euclidean distance.

~

13
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Input data table, marginals, and masses

The given contingency table data are denoted
\awk — ﬁ\aw,\Asvwv — \aAsvwvus S Nv.w S ANHV

We have k(i) = > .,
k= Mu&mf.mg ki, 7).
From frequencies to probabilities:

fro ={fi; =k(i,j5)/k;ie€I,j € J} CRrxys,similarly f; is defined as
{fi=k(i)/k;iecl,je J}CIRy, and f; analogously.

k(%, 7). Analogously k() is defined, and

The conditional distribution of f; knowing ¢ € I, also termed the jth profile
with coordinates indexed by the elements of I, is

fo=A{fl= fij/fi = (kij Jk)/ (ki /k); fi # 0; 5 € J} and likewise for f7.

k
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Clouds of points, masses, and inertia

e Moment of inertia of a cloud of points in a Euclidean space, with both distances
and masses defined: M*(N;(I)) =", _; fillf5 — fsllF, = 2 .c; fir?(0).

e Here: p is the Euclidean distance from the cloud centre, and f; is the mass of
element .

e The mass is the marginal distribution of the input data table.

e Correspondence analysis is, as will be seen, a decomposition of the inertia of a
cloud of points, endowed with masses.

N k

15
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Inertia and Distributional Equivalence

e Another expression for inertia: M*(N;(I)) = M?*(N;(J)) =
lfrs = fifsllz e, = Dier s (fis = fifi)?/ fifi:

o Theterm ||fr; — frfsl7, 5, isthe x* metric between the probability
distribution f;; and the product of marginal distributions f7 f 7, with as centre
of the metric the product f;f.

e Principle of distributional equivalence: Consider two elements j; and j2 of J
with identical profiles: i.e. \mp = ww. Consider now that elements (or
columns) j; and j- are replaced with a new element 5 such that the new
coordinates are aggregated profiles, f;;, = fij; + fij, and the new masses are
similarly aggregated: fi;, = fij; + fij,. Then there is no effect on the
distribution of distances between elements of 1. The distance between elements

/ of .J, other than j; and 7. is naturally not modified. K

16
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Inertia and Distributional Equivalence (Cont’d.)

e The principle of distributional equivalence leads to representational

self-similarity: aggregation of rows or columns, as defined above, leads to the
same analysis. Therefore it is very appropriate to analyze a contingency table
with fine granularity, and seek in the analysis to merge rows or columns,
through aggregation.

17
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4 Factors '

Correspondence Analysis produces an ordered sequence of pairs, called factors,
(Fo, G ) associated with real numbers called eigenvalues 0 < )\, < 1.

We denote F,, (1) the value of the factor of rank « for element ¢ of I; and
similarly G (J) is the value of the factor of rank « for element j of J.

We see that F' is a function on 7, and G is a function on J.

The number of eigenvalues and associated factor couples is:
a=1,2,...,N=inf(| I | —=1,| J| —1), where | . | denotes set cardinality.

K

18
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Properties of factors

= 0; Mwmh\uQQQVHO
V,Qw Mum%\uﬁwﬁwv”\/o«
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Normalized factors: on the sets I and .J, we next define the functions ¢’ and
1’ of zero mean, of unit variance, pairwise uncorrelated on I (resp. .J), and
associated with masses f; (resp. fr).

MU@.mM .\.s%QAsv = 0; MUu.m,N .\.,Q.QQC.V =0
S s B0 =1 30,5 fA ) =1
et fida(Dds(0) = bags 3, Fiba(i)Ps(i) = das

k
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Between unnormalized and normalized factors, we have the following relations.

ba(i) = Aa 2 Fa(i) Vi€ I, Ya=1,2,...N
_1
Va(j) = Ao 2Ga(j) Vi€ J, Ya=1,2,...N

The moment of inertia of the clouds N ;(I) and N;(J) in the direction of the o
axis is Aq.

k
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Forward transform

e Have that the y* metric is defined in direct space, i.e. space of profiles.
e The Euclidean metric is defined for the factors.

e \We can characterize correspondence analysis as the mapping of a cloud in y?
space to Euclidean space.

e Distances between profiles are as follows.

. ./ . ./ 2 2
o 15— 1503, = ey (5= ) 105 = Cma i (Fali) = Fal@))
o 1= A1 = Yy (F = 1) 10 = L (Gali) = Gali)?

e Norm, or distance of a point < € N ;(I) from the origin or centre of gravity of
the cloud N (1), is as follows.

« 0°(0) = If5 = fsll}, = X asyn Fald)
/ p*(4) = IIf1 = fillF, = sy v Fa0)

21
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Inverse transform

The correspondence analysis transform, taking profiles into a factor space, is
reversed with no loss of information as follows V(i, j) € I x J.

fir = fifi (14 sy y e Fali)Ga())

For profiles we have the following.
f =1 (14 Lo A Fali)Gal)))
fi= 5 (14 T Fa)Ga()

22
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Decomposition of inertia

The distance of a point from the centre of gravity of the cloud is as follows.
. i i 2

p2() = |If5 — FalP =3, (Fi= 1) /45

Decomposition of the cloud’s inertia is as follows.

MA(NJ(1) =3y v Aa = D iey Jir™(0)

In greater detail, we have the following for this decomposition.

Mo = Yo, FiF2(0) and p2(6) = 0, F2(0)

23
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Relative and absolute contributions

£:p%) is the absolute contribution of point i to the inertia of the cloud,
M?(N (1)), or the variance of point i.

fiF2(4) is the absolute contribution of point i to the moment of inertia ).

fiF2(i) /o is the relative contribution of point 7 to the moment of inertia ).
(Often denoted CTR.)

FZ (i) is the contribution of point I to the x* distance between 4 and the centre
of the cloud N (I).

cos® a = F2(i)/p*(7) is the relative contribution of the factor « to point 4.
(Often denoted COR.)

e Based on the latter term, we have: >~ . FZ(i)/p*(i) = 1.
Analogous formulas hold for the points j in the cloud N;(J). K

24
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Reduction of dimensionality

Interpretation is usually limited to the first few factors.

Decomposition of inertia is usually far less decisive than (cumulative)

percentage variance explained in principal components analysis. One reason for

this: in CA, often recoding tends to bring input data coordinates closer to
vertices of hypercube.

QLT(H) = > _, A cos” a, where angle a has been defined above (previous

section) and where N’ < N is the quality of representation of element s in the

factor space of dimension N”.

INR(I) = p*(i) is the distance of element I from the centre of gravity of the
cloud.

POID(I) = f; is the mass or marginal frequency of the element s.

k

25



orrespondence Analysis — F Murtagh

Interpretation of results

Projections onto factors 1 and 2, 2 and 3, 1 and 3, etc. of set I, set .J, or both
sets simultaneously.

Spectrum of non-increasing values of eigenvalues.

Interpretation of axes. We can distinguish between the general (latent semantic,
conceptual) meaning of axes, and axes which have something specific to say
about groups of elements. Usually contrast is important: what is found to be
analogous at one extremity versus the other extremity; or oppositions or
polarities.

Factors are determined by how much the elements contribute to their dispersion.
Therefore the values of CTR are examined in order to identify or to name the
factors (for example, with higher order concepts). (Informally, CTR allows us
to work from the elements towards the factors.)

The values of COR are squared cosines, which can be considered as being ___A(

26



orrespondence Analysis — F Murtagh

-

correlation coefficients. If COR(%, «) is large (say, around 0.8) then we can say
that that element is well explained by the axis of rank «.. (Informally, COR
allows us to work from the factors towards the elements.)

27
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Analysis of the dual spaces

e \We have the following.
o Fo(i)=Xa? ) .o, fiGa(j)fora=1,2,...N;iecl

1 .
o Go(j) =Aa? ) o, fiFa(i)fora=1,2,...N;jeJ

e These are termed the transition formulas. The coordinate of element 7 € I is the
barycentre of the coordinates of the elements 5 € .J, with associated masses of
value given by the coordinates of h@.. of the profile f%. This is all to within the

k
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Analysis of the dual spaces (cont’d.)

We also have the following.
bali) = Aa® 3o, Fitba(d)
Yo(d) = Aa? Xies £ bali)

This implies that we can pass easily from one space to the other. l.e. we carry
out the diagonalization, or eigen-reduction, in the more computationally
favourable space which is usually IR”. In the output display, the barycentric
principle comes into play: this allows us to simultaneously view and interpret
observations and attributes.

29
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Supplementary elements

e Overly-preponderant elements (i.e. row or column profiles), or exceptional

may be placed as supplementary elements.

e This means that they are given zero mass in the analysis, and their projections
are determined using the transition formulas.

e This amounts to carrying out a correspondence analysis first, without these
elements, and then projecting them into the factor space following the
determination of all properties of this space.

elements (e.g. a sex attribute, given other performance or behavioural attributes)

k
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Space IR™:

Summary

1. n row points, each of m coordinates.

2. The 5*" coordinate is x;; /x;.

3. The mass of point i is x;.

4. The x* distance between row points 7 and & is:
A2 (i, k) = Y, 2 (20— )2,
Hence this is a Euclidean distance, with respect

to the weighting 1/z; (for all 5), between profile
values x;; /x; etc.

5. The criterion to be optimized: the weighted sum
of squares of projections, where the weighting

IS given by z; (for all 7).

31
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Space R™:

1. m column points, each of n coordinates.
2. The i*" coordinate is ;; /.
3. The mass of point j is z;.

4. The y? distance between column points g and j is:

d*(g,5) = 32, (52 — 22)2,
Hence this is a Euclidean distance, with respect

to the weighting 1/, (for all 7), between profile

values x;, /x4 etc.

5. The criterion to be optimized: the weighted sum

of squares of projections, where the weighting

Is given by x; (for all j).

32
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Hierarchical clustering

e Hierarchical agglomeration on »n observation vectors, ¢ € I, involves a series of

1,2,...,n — 1 pairwise agglomerations of observations or clusters, with the
following properties.
e Ahierarchy H = {q|q € 2’} such that:
1. I e H
2. 1€ HYi
3. foreachgec H,¢ € H:qNqg #0=qCq' orq Cgq

e An indexed hierarchy is the pair (H, v) where the positive function defined on

H,ie,v:H — IR™", satisfies:
1. v(2) = 0if i € H isasingleton
2. qCq = v(q) <v(q)

/. Function v is the agglomeration level.

k
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Take g C ¢, letq C ¢" and ¢’ C ¢”, and let ¢” be the lowest level cluster for
which this is true. Then if we define D(q, ¢') = v(¢"), D is an ultrametric.

Recall: Distances satisfy the triangle inequality d(z, z) < d(x,y) + d(y, z).
An ultrametric satisfies d(x, z) < max(d(z,y),d(y, z)). In an ultrametric
space triangles formed by any three points are isosceles. An ultrametric is a
special distance associated with rooted trees. Ultrametrics are used in other
fields also — in quantum mechanics, numerical optimization, number theory, and
algorithmic logic.

In practice, we start with a Euclidean distance or other dissimilarity, use some
criterion such as minimizing the change in variance resulting from the
agglomerations, and then define v(q) as the dissimilarity associated with the
agglomeration carried out.

K
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Minimum variance agglomeration

e For Euclidean distance inputs, the following definitions hold for the minimum
variance or Ward error sum of squares agglomerative criterion.

e Coordinates of the new cluster center, following agglomeration of g and ¢/,
where m is the mass of cluster ¢ defined as cluster cardinality, and (vector) q
denotes using overloaded notation the center of (set) cluster q:

q" = (mqq+mgq')/(mgq +mg).

e Following the agglomeration of ¢ and ¢’, we define the following dissimilarity:
(mqmgr)/(mq +mg)llg —q'|*.

e Hierarchical clustering is usually based on factor projections, if desired using a
limited number of factors (e.g. 7) in order to filter out the most useful
information in our data.

e In such a case, hierarchical clustering can be seen to be a mapping of Euclidean

/ distances into ultrametric distances. K

36
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Efficient NN chain algorithm

/. A NN-chain (nearest neighbour chain)

37
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Efficient NN chain algorithm (cont’d.)

An NN-chain consists of an arbitrary point followed by its NN; followed by the

NN from among the remaining points of this second point; and so on until we

necessarily have some pair of points which can be termed reciprocal or mutual

NNSs. (Such a pair of RNNs may be the first two points in the chain; and we
have assumed that no two dissimilarities are equal.)

In constructing a NN-chain, irrespective of the starting point, we may
agglomerate a pair of RNNSs as soon as they are found.

Exactness of the resulting hierarchy is guaranteed when the cluster
agglomeration criterion respects the reducibility property.

Inversion impossible if: d(i,j) < d(i, k) or d(j, k) = d(i,7) < d(i U j, k)

k
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Minimum variance method: properties

We seek to agglomerate two clusters, c¢; and cz, into cluster ¢ such that the
within-class variance of the partition thereby obtained is minimum.

Alternatively, the between-class variance of the partition obtained is to be
maximized.

Let P and () be the partitions prior to, and subsequent to, the agglomeration; let
p1, P2, ... Dbe classes of the partitions.

P = {p1,p2,...,pk,C1,C2}
@ — Aﬂmwwvmwwu...vmffﬁuv.

Total variance of the cloud of objects in m-dimensional space is decomposed
into the sum of within-class variance and between-class variance. This is
Huyghen’s theorem in classical mechanics.

Total variance, between-class variance, and within-class variance are as dﬁo__oét

39



orrespondence Analysis — F Murtagh

-

w M@mw Mus.m@Q R @vw.

and co into new class c is:

V(P) - V(Q)

N

~

VI =13, (-9 V(P)=3 . Z(p-g)*and

e For two partitions, before and after an agglomeration, we have respectively:

e From this, it can be shown that the criterion to be optimized in agglomerating c;

= V() =V(er) = V(e2)

lc1]| |e2]

g__op —caf”,

k
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FACOR and VACOR: Analysis of clusters

e The barycentric principle allows both row points and column points to be
displayed simultaneously as projections.
e \We therefore can consider:
— simultaneous display of I and J
— treeon [
— treeon J
e To help analyze these outputs we can explore the representation of clusters

(derived from the hierarchical trees) in factor space, leading to programs
traditionally called FACOR.

e And the representation of clusters in the profile coordinate space, leading to
/ programs traditionally called VACOR.

k
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\. In the case of FACOR, for every couple g, ¢’ of a partition of I, we calculate /
(fa + f2)

This can be decomposed using the axes of IR.;, as well as using the factorial

axes.

e In the case of VACOR, we can explore the cluster dipoles which takes account
of the “elder” and “younger” cluster components:

n

/ \
/N

/ \
a(n) b (n)

e We have Fi,(a) = MU&QQ&\?V@Q@. We consider the vectors defining the
dipole: [g, a(q)] and [g, b(q)].

/. We then study the squared cosine of the angle between vector [a(q), b(q)] m:g&

42
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the factorial axis of rank a.

e This squared cosine defines the relative contribution of the pair ¢, « to the level
index v(q) of the class q.

43
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Summary

Correspondence analysis displays observation profiles in a low-dimensional
factorial space.

Profiles are points endowed with x* distance.

Under appropriate circumstances, the x* distance reduces to a Euclidean
distance.

A factorial space is nearly always Euclidean.
Simultaneously a hierarchical clustering is built using the observation profiles.

Usually one or a small number of partitions are derived from the hierarchical
clustering.

A hierarchical clustering defines an ultrametric distance.

Input for the hierarchical clustering is usually factor projections. K
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e In summary, correspondence analysis involves mapping a x> distance into a
particular Euclidean distance; and mapping this Euclidean distance into an

ultrametric distance.

e The aim is to have different but complementary analytic tools to facilitate
interpretation of our data.

45
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