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Principal Components Analysis I

Topics:
e Reference: F Murtagh and A Heck, Multivariate Data Analysis, Kluwer, 1987.
e Preliminary example: globular clusters.

e Data, space, metric, projection, eigenvalues and eigenvectors, dual spaces,
linear combinations.

e Practical aspects — nonlinear terms, standardization, list of objectives, procedure
followed.

e Image multiband compression, “eigen-faces”.

e Software: http://astro.u-strasbg-{$fimurtagh/mda-sw
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Example: analysis of globular cIustersI

M. Capaccioli, S. Ortolani and G. Piotto, “Empirical correlation between
globular cluster parameters and mass function morphology”, AA, 244,
298-302, 1991.

14 globular clusters, 8 measurement variables.

Data collected in earlier CCD (digital detector) photometry studies.
Pairwise plots of the variables.

PCA of the variables.

PCA of the objects (globular clusters).
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/ Hierarchical clustering (Ward’s) of globular clusters \
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Principal plane (48%, 24% of variance)
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Matrix X defines a set af vectors inm-dimensional space:
xi = {xi1, Tia, ..., Tim}TOr1 <i <n.

We have:x; € R™

Matrix X also defines a set of. column vectors im-dimensional space:
Trj = {$1j,$2j, cen ,:an} forl < 7 < m.

We have:iz; € IR"

By convention we usually take the space of row points JRE., asX; and the
space of column points, i.8", as the transpose of , i.e. X’ or X*.

The row points define a cloud afpoints inIR™.

The column points define a cloud of points inIR".

/
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e The notion of distance is crucial, since we want to investigate relationships
between observations and/or variables.

e Recall:x = {3,4,1,2},y = {1,3,0,1}, then: scalar product
(,y) = (y,x) =2'y=ay =3 x1+4x3+1x0+2x1.

e Euclideannormi|z|* =3 x3+4x4+1x1+2x2.

e Euclidean distancei(x,y) = ||z — y||. The squared Euclidean distance is:
3—14+4-3+1-0+2-1

e Orthogonality:z is orthogonal tqy if (x,y) = 0.

e Distance is symmetrial(z,y) = d(y, x)), positive d(x,y) > 0), and definite

(d(z,y) =0=z =y). //
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‘ Metrics (cont’d.)'

Any symmetric, positive, definite matrix/ defines a generalized Euclidean
space. Scalar product (s, y)a = =’ My, normis||z||* = 2’ Mz, and
Euclidean distance ié(z, y) = ||z — y||a.

Classical caseM = I,,, the identity matrix.

Normalization to unit variancel! is diagonal matrix withith diagonal term
1/07.

Mahalanobis distancel/ is inverse variance-covariance maitrix.

Next topic: Scalar product defines orthogonal projection.

/
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‘ Metrics (cont’d.).

e Projected value, projection, coordinatg: = (z' Mu/u' Mu)u. Herex, andu
are both vectors.

e Norm of vectorz; = (' Mu/u'Mu)||ul| = (' Mu)/||ul|.
e The quantity(z’ Mw)/(||=||/|«||) can be interpreted as the cosine of the aagle
between vectors andu.

+ X
[
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L east Squares Optimal Projection of Points.

Plot of 3 points inR? (see following slides).
PCA: determine best fitting axes.
Examples follow.

Note: optimization means either (i) closest axis to points, or (ii) maximum
elongation of projections of points on the axis.

This follows from Pythagoras’s theorem? + y® = 2. Call z the distance
from the origin to a point. Let be the distance of the projection of the point
from the origin. Theny is the perpendicular distance from the axis to to the
point.

Minimizing y Is the same as maximizing(because is fixed).

/
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Examples of Optimal Projection I

w N =
Ot =N

13
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‘ Questions We Will Now Address'

How is the PCA of am x m matrix related to the PCA of the transposed
m X n matrix ?

~

How may the new axes derived — the principal components — be said to be |i

combinations of the original axes ?

How may PCA be understood as a series expansion ?

In what sense does PCA provide a lower-dimensional approximation to the

original data ?

18
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‘ PCA Algorithm I

/
X Mu

The projection of vectok onto axisu isy = Tallas

u

l.e. the coordinate of the projection on the axixi8/u/||ul|,,.
This becomes’ M u when the vecton is of unit length.

The cosine of the angle between vectarandy in the usual Euclidean space i
Xy /=[]l

That is to say, we make use of the triangle whose vertices are the origin, the
projection ofx ontoy, and vectokx.

The cosine of the angle betwegrandy is then the coordinate of the projection
of x ontoy, divided by the — hypotenuse — lengthxaf

The correlation coefficient between two vectors is then simply the cosine of {
angle between them, when the vectors have first been centrexrl {+.g and

y — g are used, wherg is the overall centre of gravity. /

he
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PCA Algorithm 2 I
X ={zi;}

In IR™, the space of objects, PCA searches for the best—fitting set of orthogg
axes to replace the initially—given setxafaxes in this space.

An analogous procedure is simultaneously carried out for the dual dBéce,
First, the axis which best fits the objects/pointdifi* is determined.

If u is this vector, and is of unit length, then the prodXot of n» x m matrix
by m x 1 vector gives the projections of theobjects onto this axis.

The sum of squared projections of points on the new axis, for all points, is
(Xu) (Xu).

Such a quadratic form would increase indefinitely ifvere arbitrarily large, so
u is taken to be of unit length, i.e’'u = 1.

20

nal

We seek a maximum of the quadratic foruhSu (whereS = X' X) subject to/
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/ the constraint thath'u = 1. \

e This is done by setting the derivative of the Lagrangian equal to zero.

e Differentiation ofu’Su — A(u’u — 1) where) is a Lagrange multiplier gives
25u — 2)u.

e The optimal value of1 (let us call itu;) is the solution ofSu = Au.

e The solution of this equation is well-known:is the eigenvector associated
with the eigenvalue\ of matrix S.

e Therefore the eigenvector &f’ X, u1, is the axis sought, and the
corresponding largest eigenvalueg, is a figure of merit for the axis, — it
indicates the amount of variance explained by the axis.

e The second axis is to be orthogonal to the first,w&; = 0.

e The second axis satisfies the equation
u' X' Xu — Aa(u'u—1) — pu2(u’ur) wherel; andpus are Lagrange

\ multipliers. /

21
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e Differentiating give2Su — 2 2u — pou;.

e This term is set equal to zero. Multiplying acrossidyimplies thatu, must
equal 0.

e Therefore the optimal value af, us, arises as another solution 8fi = A\u.

S.

subspaces of best fit.

e X'X isreferred to as theums of squares and cross produnatgrix.

e The eigenvectors af = X'X, arranged in decreasing order of corresponding
eigenvalues, give the line of best fit to the cloud of points, the plane of best f
the three—dimensional hyperplane of best fit, and so on for higher—dimensio

~

t,
nal

/
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e Thus)\: andu; are the second largest eigenvalue and associated eigenvectgr of
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Eigenvalues.

Eigenvalues are decreasing in value.
Ai = Ay? Then equally privileged directions of elongation have been found.

Ai = 0? Space is actually of dimensionality less than expected. Example: in|
3D, points actually lie on a plane.

Since PCA InNR™ and inIR™ lead respectively to the finding aef and ofm
eigenvalues, and since in addition it has been seen that these eigenvalues &
identical, it follows that the number afon-zero eigenvaluaesbtained in either
space is less than or equalitdn(n, m).

The eigenvectors associated with fhiargest eigenvalues yield the best-fitting
p-dimensional subspace &f". A measure of the approximation is the
percentage of variance explained by the subs@ggp /\k/zzzl Ak

expressed as a percentage. /

re
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‘ Dual Spaces.

In the dual space of attributel™, a PCA may equally well be carried out.

For the line of best fity, the following is maximized(X'v)’(X'v) subject to

viv =1.
In IR™ we arrived atX’ Xu; = \ju;.
InIR", we haveX X'vy = uivy.

Premultiplying the first of these relationships Ayyields
(XX’)(Xul) — A1 (Xu1).

Hence)\; = u1 because we have now arrived at two eigenvalue equations
which are identical in form.

Relationship between the eigenvectors in the two spaces: these must be of

24

nit
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Find: Vi = \/1>\—XLI1.
1

A > 0 since if A = 0 eigenvectors are not defined.

For\p: v, = \/i\—quk
. _ 1 /
And: L8 A— \/EX Vi

Taking Xux = v/ Ax v, postmultiplying byu), , and summing gives:

XD g ety = 30 VA, ViU

LHS gives the identity matrix (due to orthogonality of eigenvectors). Hence:
X = ZZ:1 VK ViU

This is termed: Karhunen-lawe expansion or transform.

We can approximate the dat&, by choosing some eigenvalues/vectors only.

/
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\ Linear Combinations'

The variance of the projections on a given axidRf' is given by(Xu)' (X u),
which by the eigenvector equation, is seen to equal

In some software packages, the eigenvectors are rescaled sOXteand
Vv are used instead af andv. In this case, théactorv/\ u gives the new,
rescaled projections of the points in the spiite(i.e. VA u = X'v).

The coordinates of the new axes can be written in terms of the old coordinat
system. Sincer = %X’v each coordinate of the new vectais defined as a
linear combination of the initially—given vectors:

wj =y %’Uixij =Y ", ciwij (wherei < j < m andz;; is the(i, j
element of matrixX).

)th

Thus thej*” coordinate of the new vector issyntheticvalue formed from the

C

7" coordinates of the given vectors (i, forall 1 < i < n). /
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Finding Linear Combinationsin Practice.

Say\, = 0.

ThenXu=Au=20

Hence:) . u;x; =0

This allows redundancy in the form of linear combinations to be found.
PCA is a linear transformation analysis method.

But let’'s say we have three variables, y-, andys.

We would also input the variableg, v3, y3, y1y2, y1y3, andyays.

If the linear combination; = c1y3 + cay1y2 exists, then we would find it
using PCA.

Similarly we could feed in the logarithms or other functions of variables./
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Finding Linear Combinations: Example.

Thirty objects were used, and 5 variables defined as followsqg.
y1; = —14,—-1.3,...,1.5
y2; = 2.0 — Y3
Ysj = Yi;
.2
Yaj = Y2
Ys; = Y15Y2;

COVARI ANCE MATRI X FOLLOWS.
22. 4750
-2. 2475 13. 6498
2.2475 -13.6498 13. 6498
-2.9262 28. 0250 -28.0250 62. 2917
\ 14. 5189 0. 5619 - 0. 5619 0. 7316 17.3709

~

/
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88. 3852
34. 5579
5. 2437
1. 2505
0. 0000

Finding Linear Combinations: Example.

El GENVALUES FOLLOW
Ei genval ues

68. 2842
26. 6985
4. 0512
0. 9661
0. 0000

The fifth eigenvalue is zero.

As Percent ages

Cumul . Per cent ages
68. 2842
94. 9828
99. 0339
100. 0000
100. 0000

29
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Finding Linear Combinations: Example.

El GCENVECTORS FOLLOW
VBLE. EV-1 EV-2 EV-3 EV-4 EV-5
1 -0.0630 0.7617 0.6242 -0.1620 0.0000
2 0. 3857 0.0067 -0.1198 -0.5803 0.7071
3 -0.3857 -0.0067 0.1198 0.5803 0.7071
4 0.8357 0.0499 0.1593 0.5232 0.0000
5 0. 0018 0.6460 -0.7458 0.1627 0.0000

Since we know that the eigenvectors are centred, we have the equation:
0.7071y2 + 0.7071y3 = 0.0

\_

/
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\ Normalization or Standardization '

Letr;; be the original measurements.
ina. . — i
Then definex;; = ST

i = Dy Tid

S7 = 3 2 (Tij = T5)°

Then te matrix to be diagonalize®;,' X, is of (5, k)"" term:

Pik = D iy TigTin = 5 Y i (rig —T5)(rak — T)/s58k

This is the correlation coefficient between variablesdk.

Have distance

d*(j, k) = 2?21(37’%7 —x)” = 2?21 33%23' + Z?:l i — 2 Z?:l LijLik
First two terms both yield 1. Hence:

d*(j. k) = 2(1 — pjr)

~
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Thus the distance between variables is directly proportional to the correlatio

between them.

For row points (objects, observations):
d*(i, h) = Zj (wij — xnj)* = 23(%)2 = (ri —rp) M(r; — 1)

r; andr;, are column vectors (of dimensions x 1) andM is them x m
diagonal matrix ofj*" elementl/ns?.

Therefored is a Euclidean distance associated with matx

Note that the row points are now centred but the column points are not:

therefore the latter may well appear in one quadrant on output listings.

~

L
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‘ | mplications of Standar dization I

Analysis of the matrix of j, k)'" termp,, as defined above is PCA on a
correlationmatrix.

The row vectors are centred and reduced.

Centring alone used, and not the rescaling of the variance: matix bf*"
termec;r = % Z?:l(rij — Fj)(rik — Fk)

In this case we have PCA of theriance-covarianamatrix.

If we use no normalization, we have PCA of thns of squares and
cross-productmatrix. That was what we used to begin with.

Usually it is best to carry out analysis on correlations.

33
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|terative Solution of Eigenvalue Equations.

e Solve: Au = A\u
e Choose some trial vectary : e.g.(1,1,...,1).

e Then define,ts,. . .:

Ato = X0 t1 = X()/\/X{)Xo
o At1 = X1 t2:X1/\/X/1X1

Atg = X2 t3 = ...
e Halt when there is convergence.

o |tn —tni1| <e
e At convergencet, =ty

e Hence:At,, = x,

\o thtr1l = Xn/VXnXn.

~
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Substituting forx,, in the first of these two equations gives: \
Aty = VXnXn thi1.

Hencet,, = t, 1, t,, IS the eigenvector, and the associated eigenvalue is

VXX,

The second eigenvector and associated eigenvalue may be found by carryin
a similar iterative algorithm on a matrix where the effectmofand\; have
beenpartialled out

A(Q) = A — )\111111/1.

Let us prove thatl ;) removes the effects due to the first eigenvector and
eigenvalue.

We havedu = A\u.
ThereforeAuu’ = \uu’;

Or equivalently,Auiu;, = A\puxu), for each eigenvalue.

Summing ovek gives: A ) | uguy = ) | Aguguy. /

35
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The summed term on the left hand side equals the identity matrix.

Therefored = \iuju] + dausus + . ..

From thisspectral decompositioof matrix A, we may successively remove the

effects of the eigenvectors and eigenvalues as they are obtained.

See Press et al., Numerical Recipes, Cambridge Univ. Press, for other (better!)

algorithms.

/
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‘ Objectives of PCA I

dimensionality reduction;

the determining of linear combinations of variables;

feature selection: the choosing of the most useful variables;
visualization of multidimensional data;

identification of underlying variables;

identification of groups of objects or of outliers.

37
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\ | ndicative Procedure Followed .

Ignore principal components if the new axes retained expkaith% of the
variance.

Look at projections of rows, or columns, in planes (1,2), (1,3), (2,3), etc.

Projections of correlated variables are close (if we have carried out a PCA o

correlations).

PCA is sometimes motivated by the search for latent variables: i.e.
characterization of principal components.

Highest or lowest projection values may help with this.

Clusters and outliers can be found using planar projections.

~

L

/
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PCA with Multiband Data.

Consider a set of image bands (from a multiband or multispectral or hyspectral)

data set, or frames (from video). Say we havmages, each of dimensions
n X m.

We define the “eigen-images” as follows.

Each pixel can be considered as associated with a vector of dimensidga
can take this as defining a matrix for analysis of number of rewsm, and
number of columns 3.

Carry out a PCA. The row projections define a matrix withn rows and
p’ < p columns. If we keep just the first eigenvector, then we have a matrix @
dimensiong:..m x 1.

Sayn = 512, m = 512, p = 6. The eigenvalue/vector finding is carried out on|
ap x p correlation matrix. Eigenvector/value finding has computational cost

O(p?). /

f
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e For just one principal component, = 1, convert the matrix of dimensions

n.m X 1 back to an image of dimensiomsx m pixels.

e Applications: finding typical or “eigen” face in face recognition; or finding

typical or “eigen” galaxy in galaxy morphology.

e What are the conditions for such a procedure to work well?

40
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