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Discriminant Analysis

Topics:

Linear discriminants

Fisher’s discriminant

Mean square error discriminant

Multiple discriminant analysis

Bayesian discrimination

Maximum likelihood discrimination

k-Nearest neighbours

Perceptron

Multilayer perceptron
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Basic Concepts

Training set, test set.

Test set is also known as: unseen, or out of sample.

OC or ROC diagram for 2-class problems. (OC = operating characteristic; ROC
= receiver operating characteristic.)

Detection, false alarm.

Multiple class problems.
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Discriminant Analysis: Objectives and Properties

Assess the adequacy of a classification, given the group memberships.

Assign objects to one of a number of (known) groups of objects.

Note: supervised classification (= discriminant analysis) vs. unsupervised
classification (= cluster analysis). Sometimes, along these lines, classification is
distinguised from clustering.

Remark: discriminant analysis is “discrete prediction”, whereas regression
analysis is “continuous prediction”.

So a multilayer perceptron neural network used for classification purposes is
discriminant analysis; but used for the purposes of continuous mapping it is
nonlinear regression.
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Practical Remarks

We can evaluate error rates by means of a training sample (to construct the
discrimination surface) and a test sample.

An optimistic error rate is obtained by reclassifying the design set: this is
known as the apparent error rate.

If an independent test sample is used for classifying, we arrive at the true error
rate.

The leaving one out method attempts to use as much of the data as possible: for
every subset of objects from the given objects, a classifier is designed,
and the object omitted is assigned. This leads to the overhead of discriminant
analyses, and to tests from which an error rate can be derived.

Another approach to appraising the results of a discriminant analysis is to
determine a confusion matrix which is a contingency table (a table of
frequencies of co–occurrence) crossing the known groups with the obtained
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groups.

We may improve our discrimination by implementing a reject option: if for
instance we find for all groups , we may
additionally require that be greater than some threshold for assignment
of to . Such an approach will of course help to improve the error rate.

Neyman-Pearson criterion: let be the probability of detection (i.e. finding
correct class), and let be the probability of a false alarm. Then the
Neyman-Pearson criterion is to choose the maximum subject to
where .

For alternative decision strategies, see J.L. Melsa and D.L. Cohn, Decision and
Estimation Theory, McGraw-Hill, New York, 1978.
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Statistical Pattern Recognition

+-----------------+ +---------------+
| | | |

Observation | Feature | Feature | Classifier |Decision
----------->| Extraction |--------->| |-------->
x (Vector) | | Vector y | |Vector w

| | | |
+-----------------+ +---------------+
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Linear Discriminant – 1

Simplest possible transformation: linear discriminant.

i.e. is transformed to a single scalar. Classification is then a matter of thresholding.
Restricting attention to the two-class case:

y class 1

class 2

class chosen arbitrarily
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Linear Discriminant – 2

(Simple) perceptron with a step transfer function

T
x0 |
\ |
\a1 v
\ +----+----+
\ | 1| +--|
+--+--+ | | | | output 1 => class 1

x1 a2 | | y | 0| | | 0 => class 2
------------+ +--------------->+--+---+--+-------->

. | | | | T |

. /+--+--+ +---------+
/

/ap-1 y = sum of y>T? output = 1 if y>T
/ ai.xi for i=1 = 0 otherwise

xp-1 to i=p
(Weighted sum
of inputs)
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Discriminant Function

A general discriminant function, , is a function of the form:

y class 1

class 2

class chosen arbitrarily

Examples of : linear function given by scalar product; or non-linear function giving
a multilayer preceptron.
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Linear Discriminant as Projection – 1

| 1 2 2 2 2
y1 | 1 1 1 2 2 2 2 2

| 1 1 1 1 1 1 2 2 2 2 2
| 1 1 1 1 1 1 1 2 2 2 2 2
| 1 1 1 1 1 1 2 2
| 1 1 1 1 class w2
| 1
| class w1
+--------------+---+--------------------------->

t1 t2 y0

Feature space, two-class, two dimensions
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Linear Discriminant as Projection – 2

Simple linear discriminant, i.e.

Projecting the data onto the axis corresponds to a discriminant vector
, i.e. is given a weight of 1.0, is given zero

weight.

This projection would result in a little overlap of the classes.

Projecting data onto axis , discriminant vector = (0.0,1.0), would result in
much overlap.

However, projecting the vectors onto the line shown below would be close to
optimal – no class overlap.
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Linear Discriminant as Projection – 3

*
| 1 2 2 * 2

y1 | 1 1 1 * 2 2 2 2
| 1 1 1 1 1 1* 2 2 2 2 2
| 1 1 1 1 1* 1 1 2 2 2 2 2
| 1 1 1 * 1 1 2 2
| 1*1 1 1 class w2
| * 1
| * class w1
+----------------------------------------------->

y0

* * * projection line
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Fisher’s Linear Discriminant

Project the data onto a single axis, defined by the Fisher discriminant vector

Simultaneously optimize two criteria:

maximum between-class separation, expressed as separation of the class means
, and

minimum within-class scatter, expressed as the within class variances,

Fisher criterion combines these two optimands as:

where the transformed means and variances are:
covariance for class , mean vector for

class .
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The discriminant is computed using:

where is the pooled (overall, class-independent) covariance matrix,
. are the prior probabilities.

The discriminant is the line joining and , with the “correction factor”,
, which “corrects” for overall spread of points. (“Pooled”: total, all points

contributing.)
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Fisher’s Linear Discriminant: Algorithm

1. Estimate class means and covariance matrices , and prior probabilities,
.

2. Compute pooled covariance matrix, (see equation above).

3. Invert matrix (using some standard matrix inversion procedure).

4. Compute the discriminant vector, (see equation above).

5. Apply the discriminant using equation .
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Summary

1. weighted sum of inputs

2. scalar (inner) product of vectors

3. projection

4. thresholding

5. perceptron

6. Fisher’s linear discrimant analysis
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Mean Square Error Discriminant

Fisher discriminant works only for two classes although it is possible to tackle

multi-class problems using pairwise discriminants for each of the

dichotomies.

The class vector is a binary vector, with only one bit set at any time, in which a
bit set ( = 1) denotes class ; i.e. denotes class 0

denotes class 1 etc.

+-----------------+ y class vector
| +---> class 0

Observ- | Feature +---> class 1
---------> | Extraction / +---> class j
-ation x | Classification +--->
Vector | +---> class c-1

+-----------------+
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For, initially, just one component of , , the regression problem can be
expressed compactly as:

where is a vector of coefficients
for class , is the pattern vector, and = error,

if the pattern belongs to class , otherwise.

Formulation in terms of the augmented vector , which contains the bias
element 1 is important; without it we would effectively be fitting a straight line
through the origin – the bias ( ) corresponds to a non-zero intercept of the

-axis; compared to using a separate bias element, the analysis is greatly
simplified.

The complete set of observation equations can be expressed as:

where , and , the
vector of observations of the class variable (bit). is the matrix formed
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by rows of pattern components.

The least square error fitting is given by:

Note: the th element of the matrix is , and the th row
of the vector is .

Thus, differs from the autocorrelation matrix of only by a multiplicative
factor, , so that the major requirement for the least square error fitting equation
above to provide a valid result is that the autocorrelation matrix of is
non-singular.

We can express the complete problem, where the vector has components by
replacing the vector in the least square error fitting equation with the matrix

, the matrix formed by rows of observations.

Thus, the least square error fitting equation extends to the complete least square
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error linear discriminant:

is now a matrix, and is a matrix of parameters, i.e. one
column of parameters for each dependent variable.

Applying the discriminant/transformation is simply a matter of premultiplying
the (augmented) vector by :
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Multiple Discriminant Analysis

Also a generalization of Fisher’s linear discriminant analysis.

Also termed Discriminant Factor Analysis and Canonical Discriminant
Analysis.

It adopts a similar perspective to PCA: the rows of the data matrix to be
examined constitute points in a multidimensional space, as also do the group
mean vectors. Discriminating axes are determined in this space, in such a way
that optimal separation of the predefined groups is attained. As with PCA, the
problem becomes mathematically the eigenreduction of a real, symmetric
matrix.
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Multiple Discriminant Analysis

Consider the set of objects, ; they are characterised by a finite set of
parameters, .

The vectors associated with the objects are given as the row vectors of the
matrix .

The grand mean of all vectors is given by

(where is the cardinality of ).

Let be the coordinate of the mean of group ; i.e.
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(where is the cardinality of group ).

We consider the case of mutually disjoint groups, , whose union gives .

Let be the set of these groups, and let be the number of groups
considered. Evidently, .

We now define the following three variance–covariance matrices. (of
term, ) is the total covariance matrix; is the within classes covariance
matrix; and is the between classes covariance matrix:
T :
W :
B :

The three matrices, , and , are of dimensions where is the
number of attributes (i.e. the vectors considered, their grand mean, and the
group means are located in ).

Generalizing Huyghen’s Theorem in classical mechanics, we have that
. This is proved as follows. We have, for the terms of these
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matrices:

Rewriting the first term on the right hand side of the equation as

and expanding gives the required result.

The sum of squared projections of the points in along any given axis is
given by (cf. the analogous situation in principal components analysis).

For the class means along this axis we have .

Finally, for the within class deviations along this axis, we have .

Since , we have that
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The optimal discrimination of the given groups is carried out as follows. We
choose axis to maximize the spread of class means, while restraining the
compactness of the classes, i.e.

This maximization problem is the same as

As in PCA, we use as a Lagrangian multiplier, and differentiate the
expression with respect to u.

This yields u as the eigenvector of associated with the largest
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eigenvalue, .

Eigenvectors associated with successively large eigenvalues define
discriminating factors or axes which are orthogonal to those previously
obtained.

We may therefore say that MDA is the PCA of a set of centred vectors (the
group means) in the -metric.

A difficulty has not been mentioned in the foregoing: the matrix product,
is not necessarily symmetric, and so presents a problem for diagonalization.
This difficulty is circumvented as follows. We have that . Writing
as the product of its square roots (which we can always do because of the
fact that is necessarily positive definite and symmetric) gives: .
Next, define a new vector as follows: . This gives:

We now have an eigenvalue equation, which has a matrix which is necessarily
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real and symmetric. This is solved for , and substituted back to yield .

Since the largest eigenvalue is

it is seen that the right side here, and hence all eigenvalues, are necessarily
positive and less than 1.

The eigenvalues represent the discriminating power of the associated
eigenvectors. Unlike in PCA, the percentage variance explained by a factor has
no sense in MDA, since the sum of eigenvalues has no meaning.

The classes lie in a space of dimension at most . This will be the
number of discriminant axes or factors obtainable in the most common practical
case when .
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Linear or Fisher Discriminant Analysis

2-group case of MDA.

We will look at assigning a new object (rather than confirming the separation
between given groups).

The distance, in this new -metric, between some new vector and the
barycentre (or centre of gravity) of class is defined by the Mahalanobis or
generalized distance:

Vector is assigned to the class such that is minimal over all groups.

In the two-group case, we have that is assigned to group if

Writing out explicitly the Euclidean distances associated with the matrix ,



Discriminant Analysis – F Murtagh 29

and following some simplifications, we find that vector is assigned to group
if

and to group if

The left hand side is the –projection of onto (i.e. the vector
connecting to ; and the right hand side is the –projection of

onto .

This allocation rule may be rewritten as

The left hand side here is known as Fisher’s linear discriminant function.
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Fisher’s Linear Discriminant

The assignment of a new sample to one of two groups of centres and .
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Bayesian Discrimination: Quadratic Case

Consider a vector of measured parameters, , relating to attributes of galaxies.

Next consider that a sample of galaxies which is being studied consists of 75%
spirals and 25% ellipticals.

That is,

In the absence of any other information, we would therefore assign any
unknown galaxy to the class of spirals. In the long run, we would be correct in
75% of cases, but we have obviously derived a very crude assignment rule.

Consider now that we are given also the conditional probabilities: for a
particular set of parameter values, , we have

In this case, we are led to choose the class of ellipticals for our unknown galaxy,
for which we have measured the parameter values .
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This leads to Bayes’ rule for the assignment of an unknown object to group
rather than to any other group, :

A difficulty arises with Bayes’ rule as defined above: although we could attempt
to determine for all possible values of (or, perhaps, for a discrete set
of such values), this is cumbersome.

In fact, it is usually simpler to derive values for , i.e. the probability of
having a given set of measurements, , given that we are dealing with a given
class, .

Bayes’ theorem relates priors and posteriors.

All terms on the right hand side can be sampled: is determined
straightforwardly; may be sampled by looking at each parameter in
turn among the vector , and deriving estimates for the members of class .

Assignment rule: Choose class c over all classes y, if
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But again a difficulty arises: a great deal of sampling is required to estimate the
terms of the above expression.

Hence it is convenient to make distributional assumptions about the data.

The multivariate normal density function (defining a multidimensional
bell-shaped curve) is taken to better represent the distribution of than the
single point as heretofore. This is defined as

Where is the variance-covariance matrix. It is of dimensions , if is
the dimensionality of the space. If equal to the identity matrix, it would indicate
that is distributed in a perfectly symmetric fashion with no privileged
direction of elongation. is the determinant of the matrix .

Assuming that each group, , is a Gaussian, we have
where is

the centre of class , and is its variance-covariance matrix.



Discriminant Analysis – F Murtagh 34

Substituting, taking natural logs of both sides of the inequality, and cancelling
common terms on both sides, gives the following assignment rule: Assign to
class if

This expression is simplified by defining a “discriminant score” as

The assignment rule then becomes: Assign to class if

The dividing curve between any two classes immediately follows from this. It is
defined by:

The shape of a curve defined by this equation is quadratic. Hence this general
form of Bayesian discrimination is also referred to as quadratic discrimination.
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Maximum Likelihood Discrimination

In a practical context we must estimate the mean vectors ( ) and the
variance-covariance matrices ( ) from the data which may be taken to
constitute a sample from an underlying population.

We have used a multivariate normal density function for .

If all objects have been independently sampled, then their joint distribution
is

Considering as a function of the unknown parameters and , it is termed a
likelihood function.

The principle of maximum likelihood then states that we should choose the
unknown parameters such that is maximized.



Discriminant Analysis – F Murtagh 36

The classical approach for optimizing is to differentiate it with respect to
and then with respect to , and to set the results equal to zero.

Doing this for the multivariate normal expression used previously allows us to
derive estimates for the mean and covariances as follows.

These are used to provide maximum likelihood estimates for the Bayesian
classifier.

In a more general setting, we could wish to consider a multivariate normal
mixture of the following form:
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where ranges over the set of mixture members, is a weighting factor, and
the function depends on the mean and the covariance structure of the mixture
members.

For such density functions, an iterative rather than an analytic approach is used
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Bayesian Equal Covariances Case

The groups we study will not ordinarily have the same covariance structure.

However it may be possible to assume that this is the case, and here we study
what this implies in Bayesian discrimination.
The discriminant score, when expanded, is

The first two terms on the right hand side can be ignored since they will feature
on both sides of the assignment rule (by virtue of our assumption of equal
covariances); and the third and fourth terms are equal.

If we write then the assignment rule is: Assign
to class if
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However, can be further simplified. Its second term is a constant for a given
group, ; and its first term can be regarded as a vector of constant coefficients
(for a given group), .

Hence may be written as:

Assuming , for all , the assignment rule in the case of equal
covariances thus involves a linear decision surface.

We have a result which is particularly pleasing from the mathematical point of
view: Bayesian discrimination in the equal covariances case, when the group
cardinalities are equal, gives exactly the same decision rule (i.e. a linear decision
surface) as linear discriminant analysis discussed from a geometric standpoint.
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Non-Parametric Discrimination

Non-parametric (distribution-free) methods dispense with the need for
assumptions regarding the probability density function.

Given a vector of parameter values, , the probability that any unknown point
will fall in a local neighbourhood of may be defined in terms of the relative
volume of this neighbourhood.

If points fall in this region, out of a set of points in total, and if is the
volume taken up by the region, then the probability that any unknown point falls
in the local neighbourhood of is .

In the k-NN ( nearest neighbours) approach, we specify that the volume is to
be defined by the NNs of the unclassified point.

Consider of these NNs to be members of class , and to be members of
class (with ).

The conditional probabilities of membership in classes and are then
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Hence the decision rule is: Assign to group if

The determining of NNs of course requires the definition of distance: the
Euclidean distance is usually used.

An interesting theoretical property of the NN–rule relates it to the Bayesian
misclassification rate.

The latter is defined as or, using notation introduced
previously,

This is the probability that will be misclassified, given that it should be
classified into group .
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In the 1-NN approach, the misclassification rate is the product of: the
conditional probability of class given the measurement vector , and one
minus the conditional probability of class given the NN of as the
measurement vector:

This is the probability that we assign to class given that the NN is not in this
class.

It may be shown that the misclassification rate in the 1–NN approach is not
larger than twice the Bayesian misclassification rate.
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Multilayer Perceptron

The multilayer perceptron (MLP) is an example of a supervised method, in that
it a training set of samples or items of known properties is used.

In dealing with the MLP, the single perceptron is first described, and
subsequently the networking of perceptrons in a set of interconnected, multiple
layers to form the MLP.

The influential generalized delta rule, used in training the network, is introduced
via the simpler case of the delta rule.

The perceptron algorithm is due to Rosenblatt in the late 1950s. The perceptron,
a simple computing engine which has been dubbed a “linear machine” for
reasons which will become clear.

Let x be an input vector of binary values; an output scalar; and bf w a vector
of weights (or learning coefficients; initially containing arbitrary values). The
perceptron calculates . Let be some threshold.
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If , when we would have wished for the given input, then is
incorrectly categorized. We therefore seek to modify the weights and the
threshold.

Set to make it less likely that wrong categorization will take place
again.

If then no change is made to . If then to
lessen the influence of this weight.

If the output was found to be less than the threshold, when it should have been
greater for the given input, then the reciprocal updating schedule is
implemented.

The updates to weights and thresholds may be denoted as follows::

(change in threshold for pattern )
(change in weights for pattern ).

If a set of weights exist, then the perceptron algorithm will find them. A
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counter-example is the exclusive-or, XOR, problem.

The line (hyperplane) separating T from F is defined by . In the
XOR case, linear separability does not hold. Perceptron learning fails for
non-separable problems.
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Multilayer Perceptron

AND OR XOR
0 0 F 0 0 F 0 0 F
0 1 F 0 1 T 0 1 T
1 0 F 1 0 T 1 0 T
1 1 T 1 1 T 1 1 F
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Multilayer Perceptron Solution for XOR Problem
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-4.5 5.3

8.8
9.2

4.3

-2.0

Thresholds 2, -0.1

Threshold -0.8
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The Generalized Delta Rule

Training a feedforward multilayer perceptron.

i j

wij

INPUT 
LAYER

HIDDEN
LAYER

OUPUT 
LAYER
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The Generalized Delta Rule

Initially we consider linear units only, i.e.

The input at the th neuron, , is occasioned by the th pattern.

The weight connecting the th neuron in a given layer, to the th neuron in the
subsequent layer, is denoted .

Consider an error term which we seek to minimize at each output neuron ; and
let by be the pattern which is currently being presented to the net.

Then where is the output obtained when using the
current set of weights.

The multiplicative constant of a half is purely conventional, to make this error
term look like an energy expression.

The target output, , is what we wish the network to replicate on being presented
with the th pattern.
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Consider

We may write the expression for as

The rate of change of with respect to is given by the chain rule:

Now, since , the first term here is .

Given that linear units are being considered, i.e. , the second
term equals .

The gradient of is thus

If and if updates do not take place after every
training pattern, , then we may consider the updating of weights as a classical
gradient descent minimization of .
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Each weight is updated according to

where is a small constant.

This corresponds to steepest descent optimization: we vary the weights in
accordance with the downwards slope.

So far, with linear units, we have done the following.

Given a vector of inputs, , the values at the hidden layer are given by .
The values at the output layer are then . Note that we can “collapse”
our network to one layer by seeking the weights matrix . If is
the target vector, then we are seeking a solution of the equation .
This is linear regression.

Backpropagation assumes greater relevance when nonlinear transfer functions
are used at neurons.
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The Generalized Delta Rule for Nonlinear Units

Nonlinear transformations are less tractable mathematically but may offer more
sensitive modeling of real data.

They provide a more faithful modeling of electronic gates or biological neurons.

Consider the accumulation of weighted values of a neuron

net

where if unit is an input one.

This is passed through a differentiable and nondecreasing transformation, ,

net

Normally this transfer function is a sigmoidal one.

If it were a step function, this would violate our requirement for a differentiable
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function.

One possibility is the function . Another choice is the
hyperbolic tangent or tanh function: for ; for

; otherwise

Both of these functions are invertible and continuously differentiable.

Both have semilinear zones which allow good (linear) fidelity to input data.

Both can make “soft” or fuzzy decisions.

Finally, they are similar to the response curve of a biological neuron.

As before, the change in weights will be defined to be proportional to the energy
(or error function) slope, and the chain rule yeilds:

net
net

From the definition of net , the last term is . Let net .
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Hence

or

where is the learning constant, usually a small fraction which prevents
rebounding from side to side in ravines of the energy surface.

Note that for a linear output unit, by definition net and so we have
as was seen above when considering such units.

It must now be determined how to define .

We have

net o net
and the last term is equal to net , i.e. the derivative of the transfer function.

Two cases will be distinguished depending on whether the unit is an output one
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or a hidden layer one.

Case 1: Unit is an output one, and it is found that

net

Case 2: Unit is a hidden layer one and it is found that

net

Hence the deltas at an internal node can be derived from the deltas at a
subsequent (closer to output) node.

The overall algorithm is as follows: present pattern; feed forward, through
successive layers; backpropagate – updating weight; repeat.

An alternative is to determine the changes in weights as a result of presenting all
patterns: . This so-called “off-line” updating of weights is
computationally more efficient but loses on the adaptivity of the overall
approach.
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Some further notes on the multilayer perceptron using the generalized delta rule
follow.

A local optimum set of weights may be arrived at. There is no guarantee of
arriving at a global optimum in weight space.

For the logistic activation function defined by

net net

where
net

and the last term is a bias (or threshold, we have the following result:

net

For this function:
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for an output unit,

for a hidden layer unit.

In practice one must use approximations to hard-limiting values of 0, 1; e.g. 0.1,
0.9 can be used. Otherwise, infinite weight values would be needed in the above
expression for net .

It is found that symmetry breaking is necessary in order to get the
backpropagation algorithm started. This involves randomizing the initial
arbitrary weight values.

The presence of an additional momentum term,
often helps the convergence properties of the

steepest descent iterative optimization.

This term takes the effect of previous steps into account. If the change in the
previous step was large, the momentum tends to continue to keep the delta large.
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The learning rate, , should be small (0.7 or smaller).

The MLP architecture using the generalized delta rule can be very slow.

The number of hidden layers in an MLP and the number of nodes in each layer
can vary for a given problem. In general, more nodes offer greater sensitivity to
the problem being solved, but also the risk of overfitting.
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Examples

Faint star/galaxy discrimination

Cosmic ray hit/point source discrimination


