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Topics:

‘ Cluster Analysis.

Example: globular cluster study (PCA and clustering)
Metric and distance

Hierarchical agglomerative clustering

Single link, minimum variance criterion

Graph methods — minimal spanning tree, Voronoi diagram
Distribution mixture modelling — Bayes factors

Kohonen self-organizing maps

Examples: BATSE gamma ray bursts — numbers of classes; interactive visus
user interfaces.

Al

Software: http://astro.u-strasbg<ffimurtagh/mda-sw /
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‘ Cluster Analyss.

e Unsupervised classification, clustering, cluster analysis, automatic
classification. Versus: Supervised classification, discrimant analysis, trainak
classifier, machine learning.

Some Terms

e For clustering we will consider (i) partitioning methods, (ii) agglomerative
hierarchical classification, (iii) graph methods, (iv) statistical methods, or
distribution mixture models, (v) Kohonen self-organizing feature map.

e Later for discrimination we will consider (i) multiple discriminant analysis
(geometric), (ii) nearest neighbour discriminant analysis, (iii) neural network:
multilayer perceptron, (iv) machine learning methods, and (v) classification
trees.

e Note that principal components analysis, correspondence analysis, or inde
\ visualization display methods, can be used for clustering. j

e

V)
I
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Example: analysis of globular cIustersI

M. Capaccioli, S. Ortolani and G. Piotto, “Empirical correlation between
globular cluster parameters and mass function morphology”, AA, 244,
298-302, 1991.

14 globular clusters, 8 measurement variables.

Data collected in earlier CCD (digital detector) photometry studies.
Pairwise plots of the variables.

PCA of the variables.

PCA of the objects (globular clusters).
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/ Hierarchical clustering (Ward’s) of globular clusters \
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Principal component 2
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Hierarchical cIustering.

e Hierarchical agglomeration amobservation vectorsg,c I, involves a series of
1,2,...,n — 1 pairwise agglomerations of observations or clusters, with the

following properties.
e AhierarchyH = {q|q € 2'} such that:
1.1 e H
2.1€ HVi
3. foreaclyc H,¢ €c H:qnNnq¢g #0=qgCq orqg Cq
e An indexed hierarchy is the pai#, ) where the positive function defined on
H,ie.,v: H— IR", satisfies:
1. v(i) = 0if ¢ € H is asingleton
2. qCq = v(q) <v({)

\o Functionv is the agglomeration level. /

10
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e Takeq C ¢/, letq C ¢” andq’ C ¢”, and letg” be the lowest level cluster for

~

which this is true. Then if we definB(q, ¢') = v(q"), D is an ultrametric.

Recall: Distances satisfy the triangle inequality, z) < d(x,y) + d(y, z).
An ultrametric satisfied(x, z) < max(d(x,y),d(y, z)). In an ultrametric
space triangles formed by any three points are isosceles. An ultrametric is &
special distance associated with rooted trees. Ultrametrics are used in othel|
fields also — in quantum mechanics, numerical optimization, number theory,
algorithmic logic.

In practice, we start with a Euclidean distance or other dissimilarity, use somn
criterion such as minimizing the change in variance resulting from the
agglomerations, and then defing;) as the dissimilarity associated with the

agglomeration carried out.

11
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Metric and UItrametric'

Triangular inequality:

Symmetry: d(a,b) = d(b,a)

Positive semi-definiteness. d(a,b) > 0, if a # b;d(a,b) =0, ifa =b
Triangular inequality: d(a,b) < d(a,c) + d(c,b)

Ultrametric inequality:d(a, b) < max(d(a,c) + d(c, b))

Minkowski metric:d,(a, b) = (/Zg la; —bj|P p>1.

Particular cases of the Minkowski metrig:= 2 gives Euclideanp = 1 gives
Hamming or city-block; ané= oo givesds (a,b) = max; | a; — b; | which is
the “maximum coordinate” o€hebyshewistance.

Also termed lg, L1, and L, distances.

for binary data.

Question: show that squared Euclidean and Hamming distances are thejn

12
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‘ Single Linkage Hierarchical Clustering I

Dissimlarity matrix defined for 5 objects

e
110 4 9 5 8
21 4 0 6 3 6
319 6 0 6 3
415 3 6 0 5
5| 8 6 3 5 0

Aggl onerate 2 and 4 at
dissimlarity 3

o © ~ O
o1 o O »~
w O o ©
O W 01 ©

Aggl onerate 3 and 5 at

dissimlarity 3/

13
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Single Linkage Hierarchical Clustering —2'

I

11 0 4 8
2| 4 O 5
35| 8 5 0

Aggl onerate 1 and 2WU4 at
dissimlarity 4

1R 305
______ T
10RUW | 0 5
3U5 | 5 0

Finally aggl onerate 1U2WU4
and 3U5 at dissim 5

/

14
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Single Linkage Hierarchical CIustering—SI
Resul ti ng dendr ogram r C
|
|
L + 4 . 5
| |
o m - - | 3 4
| | |
| | ook 2 3
| | |
T 1... 3
I
I 0... 0

\r: ranks or levels. ¢ = criterion values (linkage WtS)/
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Single Linkage Hierarchical Clustering —3.

Input An n(n — 1)/2 set of dissimilarities.
Step 1 Determine the smallest dissimilarity;s. .

Step 2 Agglomerate objectsandk: i.e. replace them with a new object, k;
update dissimilarities such that, for all objegts- i, k:

divk,; = min {di;, di;}.
Delete dissimilaritiesl;; anddy, for all j, as these are no longer used.

Step 3 While at least two objects remain, return to Step 1.

\_
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Single Linkage Hierarchical CIustering—4I

Preciselyn — 1 levels forn objects. Ties settled arbitrarily.
Note single linkage criterion.
Disadvantage: chaining. “Friends of friends” in the same cluster.

Lance-Williams cluster update formula:
coefficientsw;, a4, 3, and~ define the agglomerative criterion.

For single link,a; = 0.5, 3 = 0 andy = —0.5.
These values always imply: miid;x, d,x }

Ultrametric distance), resulting from the single link method is such that
0(i,7) < d(i,7) always. Itis also unique (with the exception of ties). So sing|

e

link is also termed the subdominant ultrametric method. /

17
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‘ Other Hierarchical Clustering Criteria.

Complete link: substitute max for min in single link.
Complete link leads to compact clusters.

Single link defines the cluster criterion from the closest object in the cluster.

Complete link defines the cluster criterion from the furthest object in the clusier.

Complete link yields aninimal superior ultrametric. Unfortunately this is not
unique (as is thenaximal inferior ultrametric, or subdominant ultrametric).

Other criteria definel (i U 7, k) from the distance betweédnand something
closer to the mean afandj. These criteria include the median, centroid and
minimum variance methods.

A problem that can arise: inversions in the hierarchy. l.e. the cluster criterior
value is not monotonically increasing. That leads to cross-overs in the

dendrogram. /

18
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e Of the above agglomerative methods, the single link, complete link, and

minimum variance methods can be shown to never allow inversions. They
satisfy thereducibility property.

19
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/Hierarchical

clustering
methods (and

Lance and Williams
dissimilarity
update formula.

Coordinates
of centre of
cluster, which

Dissimilarity
between cluster
centresandg;.

aliases). agglomerates
clusters; andj.
Single link a; = 0.5
(nearest B =0
neighbour). v = —0.5
(More simply:
min{d;k, djr})
Complete link | a; = 0.5
(diameter). B =0
v=0.5
(More simply:
maz{dik,d;k})
Group average| «; = %
(averagelink, | =0
v=20

\UPGMA).

20
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sum of squares.

Hierarchical Lance and Williams Coordinates Dissimilarity
clustering dissimilarity of centre of between cluster
methods (and update formula. cluster, which centrgsandg;.
aliases). agglomerates
clustersi andj.

Median method | «; = 0.5 g = gi;g‘j lgi — g5 [
(Gower’s, B = —0.25
WPGMC). v=0
Cenwoid | s = iy =t e el
(UPGMC). 3= —%

v=20
Ward's method | ars = p ey = e plle - el
(minimumvar- | 8 = — m
lance, error v=20

-

21
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‘Agglomerative Algorithm Based on Data.

points.
cluster fragment.

objects are in one cluster.

Step 1 Examine all interpoint dissimilarities, and form cluster from two closest

Step 2 Replace two points clustered by representative point (centre of gravity) of

Step 3 Return to Step 1, treating clusters as well as remaining objects, until all

/

22
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‘AgglomerativeAlgorithm Based on Dissimilarities.

Step 1 Form cluster from smallest dissimilarity.

Step 2 Define cluster; remove dissimilarity of agglomerated pair. Update
dissimilarities from cluster to all other clusters/singletons.

Step 3 Return to Step 1, treating clusters as well as remaining objects, until all
objects are in one cluster.

- /

23
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‘Exampleof Similarities.

Jaccard coefficient for binary vectaisandb. N is counting operator:

B N;(a;=b;=1)
s(a, b) — N, (aj:1)+Nj~ (b;:1)J—Nj (aj=bj=1)

Jaccard similarity coefficient of vectors (10001001111) and (10101010111) )

5/(6 +7—5) =5/8. Invector notations(a, b) = a,a+§:'g_a,b.

Note: max sim. value - sim. = dissim.

Jaccard coefficient uses counts of presence/absences in cross-tabulation of
binary presence/absence vectors:

| | al/ present a/absent |

| b/ present | nl n2 |
| b/ absent | n3 n4 |

A number of such measures have been used in information retrieival, or

|S

numerical taxonomy: Jaccard, Dice, Tanimoto, ...

24
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Record Xx:

S1,18.2, X

Record y:

S1,6.7, —

e Another example based on coding of data:

Seyfert type spectrum Integrated magnitude X-ray data?
S1 S22 S3 — | <10 > 10 Yes

x| 1 0 O 0 0 1 1

yl| 1 0 O 0 1 0 0

~

Two records (x and y) with three variables (Seyfert type, magnitude, X-ray
emission) showing disjunctive coding.

25
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‘ Minimum variance agglomer ation I

For Euclidean distance inputs, the following definitions hold for the minimum
variance or Ward error sum of squares agglomerative criterion.

Coordinates of the new cluster center, following agglomeratiapafdq’,
wherem, IS the mass of clusterdefined as cluster cardinality, and (vector)
denotes using overloaded notation the center of (set) clyster

q" = (mqq+mgyq')/(mg +mgy).

Following the agglomeration af andq’, we define the following dissimilarity:
(mgmgr)/(mg +my)|lq — q/||2-

Hierarchical clustering is usually based on factor projections, if desired using
limited number of factors (e.g. 7) in order to filter out the most useful
information in our data.

In such a case, hierarchical clustering can be seen to be a mapping of Eucli
distances into ultrametric distances.

26
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Efficient NN chain algorithm I

\o A NN-chain (nearest neighbour chain)

27
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‘ Efficient NN chain algorithm (cont’d.) I

~

An NN-chain consists of an arbitrary point followed by N¢V; followed by the

NN from among the remaining points of this second point; and so on until we

necessarily have some pair of points which can be termed reciprocal or mutj
NNSs. (Such a pair oRNNs may be the first two points in the chain; and we

have assumed that no two dissimilarities are equal.)

In constructing dVN-chain, irrespective of the starting point, we may
agglomerate a pair &®NNs as soon as they are found.

Exactness of the resulting hierarchy is guaranteed when the cluster
agglomeration criterion respects thexlucibility property

Inversion impossible if:d(i, j) < d(i, k) or d(j, k) = d(i,5) < d(i U j, k)

| =4

hal

/

28
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‘ Minimum variance method: properties.

We seek to agglomerate two clustersandcs, into clusterc such that the
within-class variance of the partition thereby obtained is minimum.

Alternatively, the between-class variance of the partition obtained is to be
maximized.

Let P and( be the partitions prior to, and subsequent to, the agglomeration]
p1, p2, ... beclasses of the partitions.

P = {p1,p2,...,Pk,C1,C2}
Q — {p17p27 e 7pkipc}
Total variance of the cloud of objectsin-dimensional space is decomposed

into the sum of within-class variance and between-class variance. This is
Huyghen’s theorem in classical mechanics.

let

29

Total variance, between-class variance, and within-class variance are asylows:
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V() =23,,6— 9 V(P) =, 2 (p—g)* and
% Zpep Ziep(i o p)2'

e For two partitions, before and after an agglomeration, we have respectively:

e From this, it can be shown that the criterion to be optimized in agglomerating
andc, into new clasg: is:

V(P)-V(Q) = V(c)—V(c1) —V(cz)

lc1]| |e2]

lc1|+]e2| lex — 02”2 ’

- /

30
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Graph M ethods.

31
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Minimal Spanning Tree.

These two points constitute a subgraph of the MST.
members of the subgraph.

MST.

\_

Step 1 Select an arbitrary point and connect it to the least dissimilar neighbour.

Step 2 Connect the current subgraph to the least dissimilar neighbour of any of {he

Step 3 Loop on Step 2, until all points are in the one subgraph: this, then, is the

/

32
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‘Minimal Spanning Tree of 14 Points. I
® o

P

[ |

| |

33
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Voronoi Diagram I

e M. Ramella, W. Boschin, D. Fadda and M. Nonino, Finding galaxy clusters
using Voronoi tessellations, A&A 368, 776-786 (2001)

e For lots on Voronoi diagrams: http://www.voronoi.com/cgi-bin/
display.voronaiapplications.php?cat=Applications

e \oronoi diagram: for given pointg we define the Voronoi cell or region ofas
{z|d(z,i) < d(z,i")} Vi

e Delaunay triangulation: perpendicular bisectors of Voronoi boundaries.
e Demo: http://www.csie.ntu.edu.twb5506061/voronoi/\Voronoi.html

e Theorem: MSTC Delaunay triangulation.

- /

36
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Voronoi Diagram

/

Some galaxies shown.
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Partitioning.

|ter ative optimization algorithm for the variance criterion

Step 1 Arbitrarily define a set ok cluster centres.

distanced?(i, p) = [|i — p||?).

then return to Step 2.

\_

Step 2 Assign each object to the cluster to which it is closest (using the Euclided

Step 4 If the totalled within class variances is better than at the previous iteratior

Step 3 Redefine cluster centres on the basis of the current cluster memberships}

/

n

38
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‘ Partitioning — Properties'

Sub-optimal.
Dependent on initial cluster centres.

The two main steps define the EM algorithm. Expectation = mean; and
Maximization = assignment step.

Diday’s nuées dynamiques.

Widely used (since computational cost of hierarchical clustering is usually

O(n?)).

/

39
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Partitioning: Spath’s Exchange Algorithm I

Exchange method for the minimum variance criterion

Step 1 Arbitrarily choose an initial partition.

Step 2 For each € p, see if the criterion is bettered by relocatinigp another class
g. If this is the case, we choose classuch that the criteriol is least; if it is

not the case, we proceed to the néxt

Step 3 If the maximum possible number of iterations has not been reached, and

least one relocation took place in Step 2, return again to Step 2.

/

40

if at



luster Analysis — F Murtagh

-

Exchange Algorithm — Properties.

e Clusters will not become empty.

e The change in variance brought about by relocating objoim classp to

classq can be shown to belL- i — p||* — 45 [|i — q|?

\_

41
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‘ Mixture M odelling I

e Data is a mixture ofy multivariate Gaussians:

fr(x;0) ~ MVN (up, X)) k=1,...,G

G
f(@;0) = mufilw;0)

G
Mixing or prior probabilities,z T = 1
k=1
e Estimate parametefs m by maximizing the mixture likelihood:

L(0,~) = 1= f (x4 0)

\ wherex; is theith observation, and is a cluster assignment function. /

42
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e Implementation: hierarchical agglomerative; iterative relocation; EM; start w

~

I\/IixtureModeIIing—ZI

agglomerative and refine with EM.

Choosing the number of clusters — the Bayes Information Criterion (BIC).
Bayes factorB = p(x | M2)/p(x | M1)

p(z | M2) = integrated likelihood of the mixture model 2 obtained by
integrating over parameter space.

Approximate the Bayes factor by the BIC:

Let p(x | G) be the integrated likelihood of the data given that thergare
clusters.

th

Then:
2logp(z | G) ~ 2l(z;0,G) — mglogn = BIC
I(z;0,G) is the maximized mixture log-likelihood wit& clusters. /

43
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me 1S the number of independent parameters to be estimated (#-ttiester
model.

The larger the value of BIC, the better the model.

44
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‘ Example: Gamma-Ray Bursts.

Few gamma-ray burst (GRB) sources have astronomical counterparts at oth
wavebands. Hence empirical studies of GRBs have been largely restricted t
analysis of their gamma ray properties.

Bulk properties such as fluence and spectral hardness are used.

Studies fall into two categories: examination whether GRB bulk properties
comprise a homogeneous population or are divided into distinct classes; an
search for relationships between bulk properties.

Generally accepted taxonomy of GRBs is division between short-hard and
long-soft bursts.

We use GRBs from the Third BATSE Catalog, from the Compton Gamma R3
Observatory. Data from 1996.

45

er
D the

There are roughly eleven variables of potential astrophysical interest: '[VVO/
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/ measures of location in Galactic coordinatesndb; two measures of burst\
durations, the times within which 50%4p) and 90% {%o) of the flux arrives;
three peak fluxe$s.s, Pos¢ and Pig24 measured in 64 ms, 256 ms and 1024 ms
bins respectively; and four time-integrated fluenégs- F} in the 0-50 keV,
50-100 keV, 100-300 keV and 300 keV spectral channels respectively

e Consider three composite variables: the total fluence,
Fr = F1 + Fs + F5 + Fy, and two measures of spectral hardness derived frgm
the ratios of channel fluencelz, = F5/F> andHsz; = F3/(F1 + F3). Of
the 1122 listed bursts, 807 have data on all the variables described above.

e Our sample had 797 GRBs. For some analyses, we also used a subset of 6414
bursts with ‘debiased’ duration,. Here the durations are modified to
account for the effect that brighter bursts will have signal above the noise fo
longer periods than fainter bursts with the same time profiles.

e \We use log variables, rather than normalized or standardized variables.

e Our analysis was performed using &%, log 190, log F}ot, l0g Pose, lOg

\ H321 and |OgH32
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Example: Gamma-Ray Bursts. Plots To Follow. I

e Reference: S. Mukherjee, E.D. Feigelson, G.J. Babu, F. Murtagh, C. Fraley and
A. Raftery, “Three types of gamma ray bursts”, The Astrophysical Journal, 5p8,
314-327, 1998.

e Pairwise plots of BATSE data showing strong correlation between variables [L
and 2, and 4 and 5.

e 3-cluster results on unconstrained model clustering (on variables 1, 3 and 4] in
principal component space.

e Corresponding BIC values with maximum value corresponding to the 3-cluster
solution.

- /
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Raftery’s Cluster Modelling I

e We will parametrize the standard spectral decomposition;of
Yr = A\DrAr DY
A IS largest eigenvalue of:
controls volume of cluster.

D, is matrix of eigenvectors:
controls orientation of cluster.

Ay isdiag{1, aag - . . apr }:
controls shape of cluster.
e Example 1: set shape, different sizes and orientations:
Forp = 2 dimensional data,
A =diag{l, a},a = A2/ M
a < 1 = long and narrow cluster.
\ Use: finding aligned sets of points.
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‘ Raftery’s Cluster Modelling—2 I

e Example 2: hyperspherical clusters, different si2zes.= A1 (I = identity

matrix).
Example 3: hyperspherical, same size (Ward’s methag)= \I.

Example 4: unconstraineédy.

A.J. Scott and M.J. Symons, “Clustering methods based on likelihood ratio
criteria”, Biometrics, 27, 387-397, 1971.

Wi = SSCP matrix for cluster,
x. = mean of clustek,
ng = cardinality of clustek,

Wi =3_,c clustef@i — =) (i — zk)"
Wk/nk = MLE of dik.

Maximizeszzl nk log ‘% (| . | = det).
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Kohonen Self-Organizing Feature Map I

Regular grid output representational or display space.

Determine vectorsvx, such that inputs; are parsimoniously summarized
(clustering objective); and in addition the vectars are positioned in
representational space so that similar vectors are close (low-dimensional
projection objective) imepresentation space.

Clustering: Associate each; with some onauv, such that
k= argmin || x; — wg ||
L ow-Dimensional projection:
| we —wi | <l ws —wy | = k=K | <[ k=K |
Initial random choice of values fap;.

Updated the set ab, (Vk) on the basis of presentation of input vectars,

Processing ong; is termed an iteration. Going through all once is termedy
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epoch.

Update not just the so-called winneg;, but also neighbors ab, with respect
to the representational space.

The neighborhood is initially chosen to be quite large (e4>xa4 zone) and as
the epochs proceed, is reducedta 1 (i.e. no neighborhood).

Example: set of 45 spectra of the complex AGN (active galactic nucleus) obj
NGC 4151, taken with the IUE (International Ultraviolet Explorer) satellite.

45 spectra observed with the SWP spectral camera, with wavelengths from
1191.2A to approximately 1794.4, with values at 512 interval steps.

We will show sample of 20 spectra; and then Kohonen map of these.

a)
-

/
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Kohonen Map: Interactive User Interface.

e About 10,000 documents described by 269 keywords from articles published in
A&A,; also in ApJ.

e 15 x 15 grid was used for the principal map, and & 5 grid for detailed maps.
e User clicks on thematic area, or enters keywords.

e A detailed map is produced. Any document listed allows access to the full
document through ADS.

e This system is server-side, based on imagemap and CGl scripts.

- /
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= Metscape: CDS Document Map — A&A 4]
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¥

C program

Make the image
(using GD)

/ Clickable Maps List of keywords

C program

Count keywords

Keyword query

| s— -

List of references

C program

Get documents

CGl scripts (Perl)

manage the human/machine interface
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