Cluster Analysis

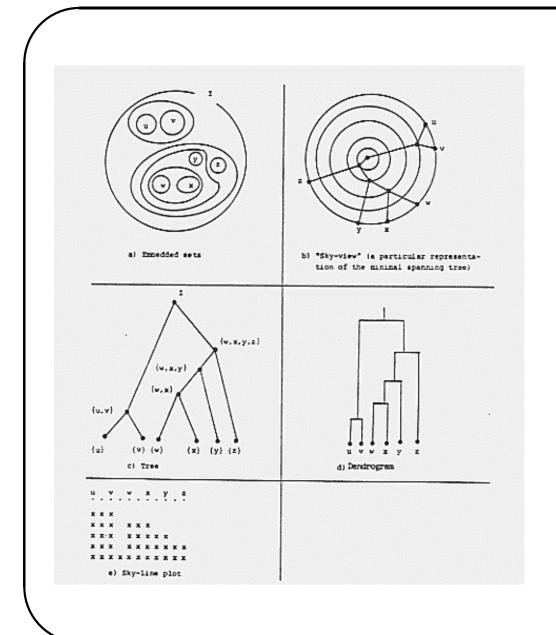
Topics:

- Example: globular cluster study (PCA and clustering)
- Metric and distance
- Hierarchical agglomerative clustering
- Single link, minimum variance criterion
- Graph methods minimal spanning tree, Voronoi diagram
- Distribution mixture modelling Bayes factors
- Kohonen self-organizing maps
- Examples: BATSE gamma ray bursts numbers of classes; interactive visual user interfaces.
- Software: http://astro.u-strasbg.fr/~fmurtagh/mda-sw

Cluster Analysis

Some Terms

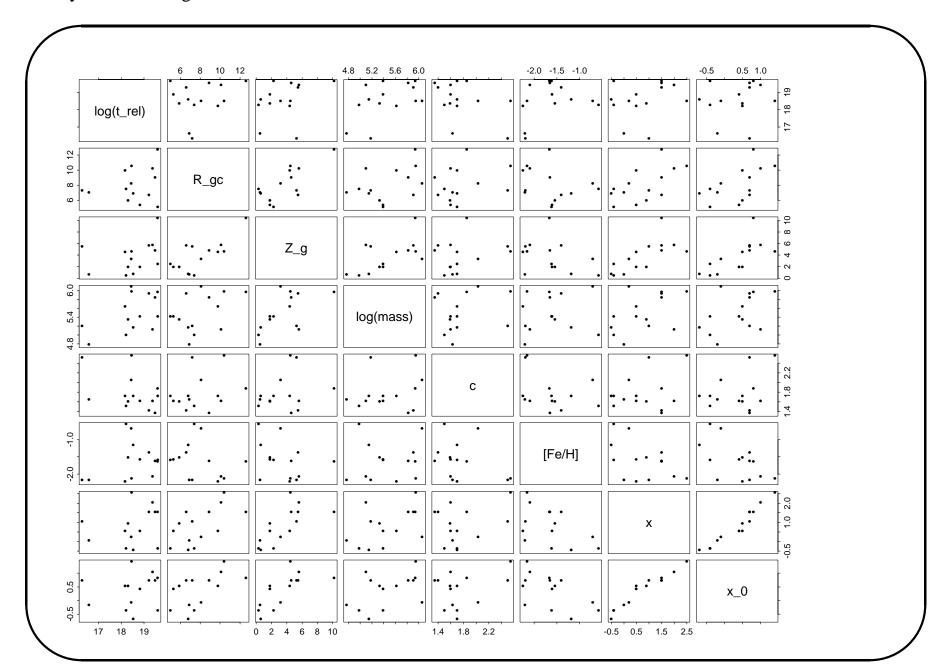
- Unsupervised classification, clustering, cluster analysis, automatic classification. Versus: Supervised classification, discrimant analysis, trainable classifier, machine learning.
- For clustering we will consider (i) partitioning methods, (ii) agglomerative hierarchical classification, (iii) graph methods, (iv) statistical methods, or distribution mixture models, (v) Kohonen self-organizing feature map.
- Later for discrimination we will consider (i) multiple discriminant analysis (geometric), (ii) nearest neighbour discriminant analysis, (iii) neural networks multilayer perceptron, (iv) machine learning methods, and (v) classification trees.
- Note that principal components analysis, correspondence analysis, or indeed visualization display methods, can be used for clustering.

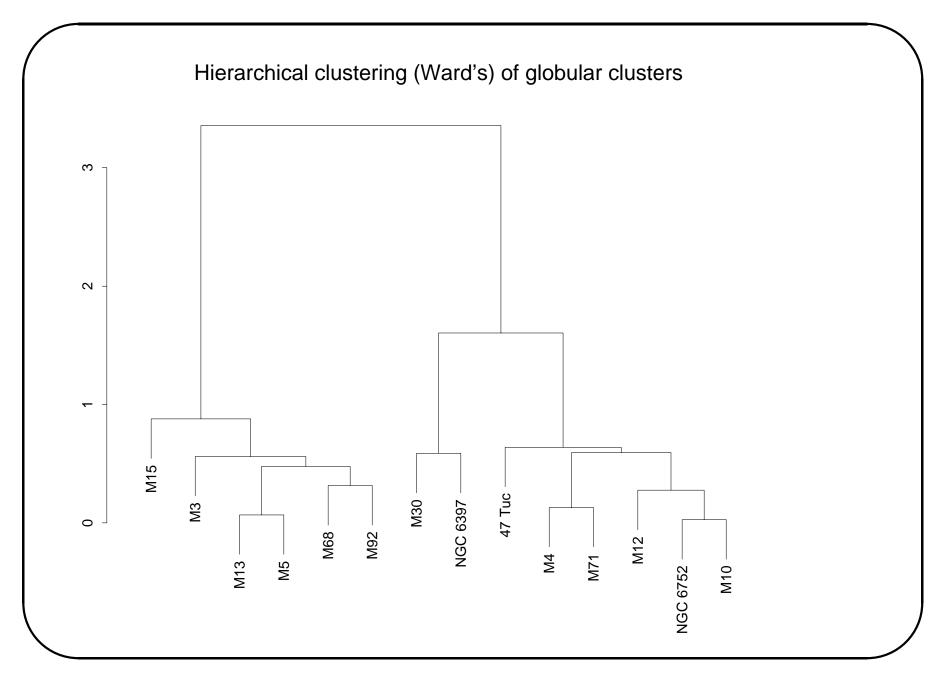


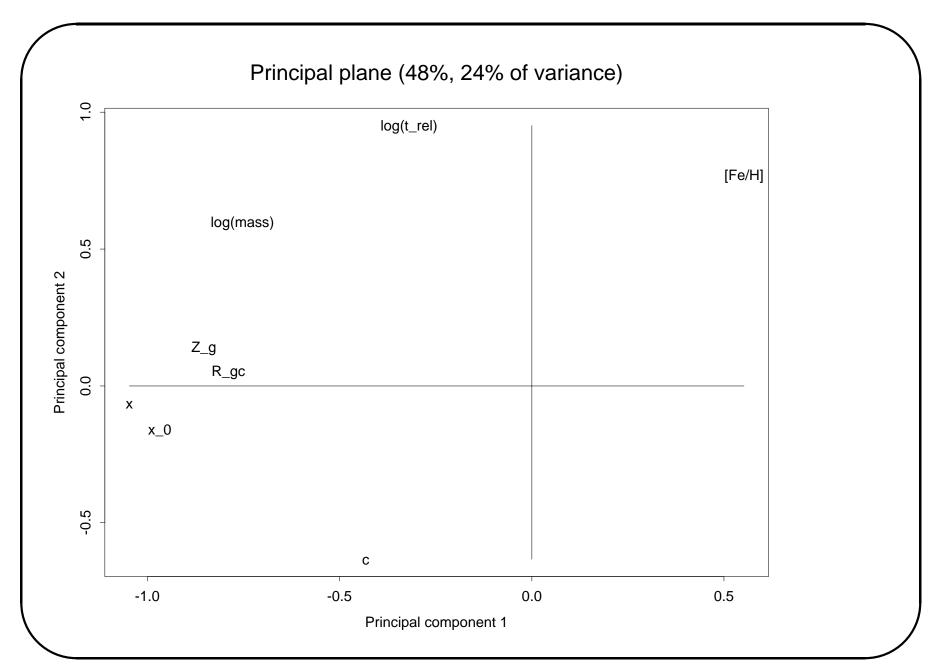
Example: analysis of globular clusters

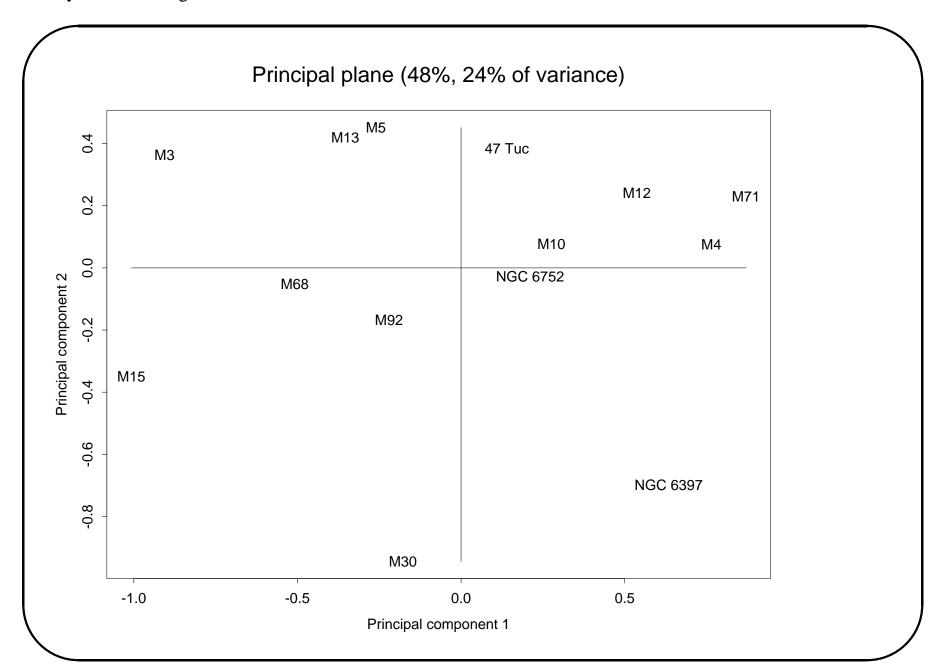
- M. Capaccioli, S. Ortolani and G. Piotto, "Empirical correlation between globular cluster parameters and mass function morphology", AA, 244, 298–302, 1991.
- 14 globular clusters, 8 measurement variables.
- Data collected in earlier CCD (digital detector) photometry studies.
- Pairwise plots of the variables.
- PCA of the variables.
- PCA of the objects (globular clusters).

Object	t_rlx years	Rgc Kpc	Zg Kpc	log(M/ M.)	С	[Fe/H]	х	x 0
M15	1.03e+8	10.4	4.5	5.95	2.54	-2.15	2.5	1.4
M68	2.59e+8	10.1	5.6	5.1	1.6	-2.09	2.0	1.0
M13	2.91e+8	8.9	4.6	5.82	1.35	-1.65	1.5	0.7
M3	3.22e+8	12.6	10.2	5.94	1.85	-1.66	1.5	0.8
M5	2.21e+8	6.6	5.5	5.91	1.4	-1.4	1.5	0.7
M4	1.12e+8	6.8	0.6	5.15	1.7	-1.28	-0.5	-0.7
47 Tuc	1.02e+8	8.1	3.2	6.06	2.03	-0.71	0.2	-0.1
M30	1.18e+7	7.2	5.3	5.18	2.5	-2.19	1.0	0.7
NGC 6397	1.59e+7	6.9	0.5	4.77	1.63	-2.2	0.0	-0.2
M92	7.79e+7	9.8	4.4	5.62	1.7	-2.24	0.5	0.5
M12	3.26e+8	5.0	2.3	5.39	1.7	-1.61	-0.4	-0.4
NGC 6752	8.86e+7	5.9	1.8	5.33	1.59	-1.54	0.9	0.5
M10	1.50e+8	5.3	1.8	5.39	1.6	-1.6	0.5	0.4
M71	8.14e+7	7.4	0.3	4.98	1.5	-0.58	-0.4	-0.4









Hierarchical clustering

- Hierarchical agglomeration on n observation vectors, $i \in I$, involves a series of $1, 2, \ldots, n-1$ pairwise agglomerations of observations or clusters, with the following properties.
- A hierarchy $H = \{q | q \in 2^I\}$ such that:
 - 1. $I \in H$
 - $i \in H \ \forall i$
 - 3. for each $q \in H, q' \in H : q \cap q' \neq \emptyset \Longrightarrow q \subset q'$ or $q' \subset q$
- An indexed hierarchy is the pair (H, ν) where the positive function defined on H, i.e., $\nu : H \to \mathbb{R}^+$, satisfies:
 - 1. $\nu(i) = 0$ if $i \in H$ is a singleton
 - 2. $q \subset q' \Longrightarrow \nu(q) < \nu(q')$
- Function ν is the agglomeration level.

- Take $q \subset q'$, let $q \subset q''$ and $q' \subset q''$, and let q'' be the lowest level cluster for which this is true. Then if we define $D(q, q') = \nu(q'')$, D is an ultrametric.
- Recall: Distances satisfy the triangle inequality $d(x,z) \leq d(x,y) + d(y,z)$. An ultrametric satisfies $d(x,z) \leq \max(d(x,y),d(y,z))$. In an ultrametric space triangles formed by any three points are isosceles. An ultrametric is a special distance associated with rooted trees. Ultrametrics are used in other fields also in quantum mechanics, numerical optimization, number theory, and algorithmic logic.
- In practice, we start with a Euclidean distance or other dissimilarity, use some criterion such as minimizing the change in variance resulting from the agglomerations, and then define $\nu(q)$ as the dissimilarity associated with the agglomeration carried out.

Metric and Ultrametric

• Triangular inequality:

Symmetry: d(a,b) = d(b,a)

Positive semi-definiteness: d(a,b) > 0, if $a \neq b$; d(a,b) = 0, if a = b

Triangular inequality: $d(a,b) \leq d(a,c) + d(c,b)$

- Ultrametric inequality: $d(a, b) \le \max(d(a, c) + d(c, b))$
- Minkowski metric: $d_p(a,b) = \sqrt[p]{\sum_j |a_j b_j|^p} \quad p \ge 1.$
- Particular cases of the Minkowski metric: p=2 gives Euclidean, p=1 gives Hamming or city-block; and $=\infty$ gives $d_{\infty}(a,b)=max_j\mid a_j-b_j\mid$ which is the "maximum coordinate" or *Chebyshev* distance.
- Also termed L_2 , L_1 , and L_{∞} distances.
- Question: show that squared Euclidean and Hamming distances are the same for binary data.

Dissimilarity matrix defined for 5 objects

1 2 3 4 5

2U4 3 5

2 | 4 0 6 3 6

3 | 9 6 0 6 3

4 | 5 3 6 0 5

5 | 8 6 3 5 0

2U4 | 4 0 6

3 | 9 6 0

5 | 8 5 3

Agglomerate 2 and 4 at Agglomerate 3 and 5 at dissimilarity 3

dissimilarity 3

	1	2U4	3U5	1U2U4 3U5
+-				
1	0	4	8	1U2U4 0 5
2U4	4	0	5	3U5 5 0
3U5	8	5	0	

Agglomerate 1 and 2U4 at dissimilarity 4

Finally agglomerate 1U2U4 and 3U5 at dissim. 5

Resulting dendrogram r C ... 2 ... 3 ... 0 ... 0

r = ranks or levels. c = criterion values (linkage wts).

Input An n(n-1)/2 set of dissimilarities.

Step 1 Determine the smallest dissimilarity, d_{ik} .

Step 2 Agglomerate objects i and k: i.e. replace them with a new object, $i \cup k$; update dissimilarities such that, for all objects $j \neq i, k$:

$$d_{i\cup k,j} = \min\{d_{ij}, d_{kj}\}.$$

Delete dissimilarities d_{ij} and d_{kj} , for all j, as these are no longer used.

Step 3 While at least two objects remain, return to Step 1.

- \bullet Precisely n-1 levels for n objects. Ties settled arbitrarily.
- Note single linkage criterion.
- Disadvantage: chaining. "Friends of friends" in the same cluster.
- Lance-Williams cluster update formula: $d(i \cup j, k) = \alpha_i d(i, k) + \alpha_j d(j, k) + \beta d(i, j) + \gamma \mid d(i, k) d(j, k) \mid \text{ where coefficients } \alpha_i, \alpha_j, \beta, \text{ and } \gamma \text{ define the agglomerative criterion.}$
- For single link, $\alpha_i = 0.5$, $\beta = 0$ and $\gamma = -0.5$.
- These values always imply: $\min\{d_{ik}, d_{jk}\}$
- Ultrametric distance, δ , resulting from the single link method is such that $\delta(i,j) \leq d(i,j)$ always. It is also unique (with the exception of ties). So single link is also termed the subdominant ultrametric method.

Other Hierarchical Clustering Criteria

- Complete link: substitute max for min in single link.
- Complete link leads to compact clusters.
- Single link defines the cluster criterion from the closest object in the cluster.

 Complete link defines the cluster criterion from the furthest object in the cluster.
- Complete link yields a *minimal superior ultrametric*. Unfortunately this is not unique (as is the *maximal inferior ultrametric*, or *subdominant ultrametric*).
- Other criteria define $d(i \cup j, k)$ from the distance between k and something closer to the mean of i and j. These criteria include the median, centroid and minimum variance methods.
- A problem that can arise: inversions in the hierarchy. I.e. the cluster criterion value is not monotonically increasing. That leads to cross-overs in the dendrogram.

• Of the above agglomerative methods, the single link, complete link, and minimum variance methods can be shown to never allow inversions. They satisfy the *reducibility property*.

			-
Hierarchical	Lance and Williams	Coordinates	Dissimilarity
clustering	dissimilarity	of centre of	between cluster
methods (and	update formula.	cluster, which	centres g_i and g_j .
aliases).		agglomerates	
		clusters i and j .	
Single link	$\alpha_i = 0.5$		
(nearest	$\beta = 0$		
neighbour).	$\gamma = -0.5$		
	(More simply:		
	$min\{d_{ik},d_{jk}\})$		
Complete link	$\alpha_i = 0.5$		
(diameter).	$\beta = 0$		
	$\gamma = 0.5$		
	(More simply:		
	$max\{d_{ik},d_{jk}\})$		
Group average	$\alpha_i = \frac{ i }{ i + j }$		
(average link,	$\beta = 0$		
UPGMA).	$\gamma = 0$		

Hierarchical	Lance and Williams	Coordinates	Dissimilarity	
clustering	dissimilarity	of centre of	between cluster	
methods (and	update formula.	cluster, which	centres g_i and g_j .	
aliases).		agglomerates		
		clusters i and j .		
Median method	$\alpha_i = 0.5$	$\mathbf{g} = \frac{\mathbf{g}_i + \mathbf{g}_j}{2}$	$\left\ \mathbf{g}_{i}-\mathbf{g}_{j} ight\ ^{2}$	
(Gower's,	$\beta = -0.25$			
WPGMC).	$\gamma = 0$			
Centroid	$\alpha_i = \frac{ i }{ i + j }$	$\mathbf{g} = \frac{ i \mathbf{g}_i + j \mathbf{g}_j}{ i + j }$	$\ \mathbf{g}_i - \mathbf{g}_j\ ^2$	
(UPGMC).	$\beta = -\frac{ i j }{(i + j)^2}$	1-11131		
	$\gamma = 0$			
Ward's method	$\alpha_i = \frac{ i + k }{ i + j + k }$	$\mathbf{g} = rac{ i \mathbf{g}_i + j \mathbf{g}_j}{ i + j }$	$\frac{ i j }{ i + j } \ \mathbf{g}_i - \mathbf{g}_j\ ^2$	
(minimum var-	$\alpha_i = \frac{ i + k }{ i + j + k }$ $\beta = -\frac{ k }{ i + j + k }$	1 1 1 10 1	1 1 101	
iance, error	$\gamma = 0$			
sum of squares.				

Agglomerative Algorithm Based on Data

- **Step 1** Examine all interpoint dissimilarities, and form cluster from two closest points.
- **Step 2** Replace two points clustered by representative point (centre of gravity) or by cluster fragment.
- **Step 3** Return to Step 1, treating clusters as well as remaining objects, until all objects are in one cluster.

Agglomerative Algorithm Based on Dissimilarities

- **Step 1** Form cluster from smallest dissimilarity.
- **Step 2** Define cluster; remove dissimilarity of agglomerated pair. Update dissimilarities from cluster to all other clusters/singletons.
- **Step 3** Return to Step 1, treating clusters as well as remaining objects, until all objects are in one cluster.

Example of Similarities

• Jaccard coefficient for binary vectors **a** and **b**. *N* is counting operator: $s(a,b) = \frac{N_j(a_j = b_j = 1)}{N_j(a_j = b_j = 1)}$

$$s(a,b) = \frac{N_j(a_j = b_j = 1)}{N_j(a_j = 1) + N_j(b_j = 1) - N_j(a_j = b_j = 1)}$$

- Jaccard similarity coefficient of vectors (10001001111) and (10101010111) is 5/(6+7-5) = 5/8. In vector notation: $s(a,b) = \frac{\mathbf{a}'\mathbf{b}}{\mathbf{a}'\mathbf{a}+\mathbf{b}'\mathbf{b}-\mathbf{a}'\mathbf{b}}$.
- Note: max sim. value sim. = dissim.
- Jaccard coefficient uses counts of presence/absences in cross-tabulation of binary presence/absence vectors:

• A number of such measures have been used in information retrieival, or numerical taxonomy: Jaccard, Dice, Tanimoto, ...

• Another example based on coding of data:

Record x: S1, 18.2, X

Record y: S1, 6.7, —

Two records (x and y) with three variables (Seyfert type, magnitude, X-ray emission) showing disjunctive coding.

	Seyfert type spectrum			etrum	Integrate	ed magnitude	X-ray data?
	S 1	S2	S 3		≤ 10	> 10	Yes
X	1	0	0	0	0	1	1
y	1	0	0	0	1	0	0

Minimum variance agglomeration

- For Euclidean distance inputs, the following definitions hold for the minimum variance or Ward error sum of squares agglomerative criterion.
- Coordinates of the new cluster center, following agglomeration of q and q', where m_q is the mass of cluster q defined as cluster cardinality, and (vector) q denotes using overloaded notation the center of (set) cluster q: $q'' = (m_q q + m_{q'} q')/(m_q + m_{q'}).$
- Following the agglomeration of q and q', we define the following dissimilarity: $(m_q m_{q'})/(m_q + m_{q'})||q q'||^2$.
- Hierarchical clustering is usually based on factor projections, if desired using a limited number of factors (e.g. 7) in order to filter out the most useful information in our data.
- In such a case, hierarchical clustering can be seen to be a mapping of Euclidean distances into ultrametric distances.

Efficient NN chain algorithm

a b c d e

• A NN-chain (nearest neighbour chain)

Efficient NN chain algorithm (cont'd.)

- An *NN*-chain consists of an arbitrary point followed by its *NN*; followed by the *NN* from among the remaining points of this second point; and so on until we necessarily have some pair of points which can be termed reciprocal or mutual *NN*s. (Such a pair of *RNN*s may be the first two points in the chain; and we have assumed that no two dissimilarities are equal.)
- In constructing a *NN*-chain, irrespective of the starting point, we may agglomerate a pair of *RNN*s as soon as they are found.
- Exactness of the resulting hierarchy is guaranteed when the cluster agglomeration criterion respects the *reducibility property*.
- Inversion impossible if: d(i,j) < d(i,k) or $d(j,k) \Rightarrow d(i,j) < d(i \cup j,k)$

Minimum variance method: properties

- We seek to agglomerate two clusters, c_1 and c_2 , into cluster c such that the within-class variance of the partition thereby obtained is minimum.
- Alternatively, the between-class variance of the partition obtained is to be maximized.
- Let P and Q be the partitions prior to, and subsequent to, the agglomeration; let p_1, p_2, \ldots be classes of the partitions.

$$P = \{p_1, p_2, \dots, p_k, c_1, c_2\}$$

$$Q = \{p_1, p_2, \dots, p_k, c\}.$$

- Total variance of the cloud of objects in m-dimensional space is decomposed into the sum of within-class variance and between-class variance. This is Huyghen's theorem in classical mechanics.
- Total variance, between-class variance, and within-class variance are as follows:

$$V(I) = \frac{1}{n} \sum_{i \in I} (i - g)^2$$
, $V(P) = \sum_{p \in P} \frac{|p|}{n} (p - g)^2$; and $\frac{1}{n} \sum_{p \in P} \sum_{i \in p} (i - p)^2$.

• For two partitions, before and after an agglomeration, we have respectively:

$$V(I) = V(P) + \sum_{p \in P} V(p)$$

$$V(I) = V(Q) + \sum_{p \in Q} V(p)$$

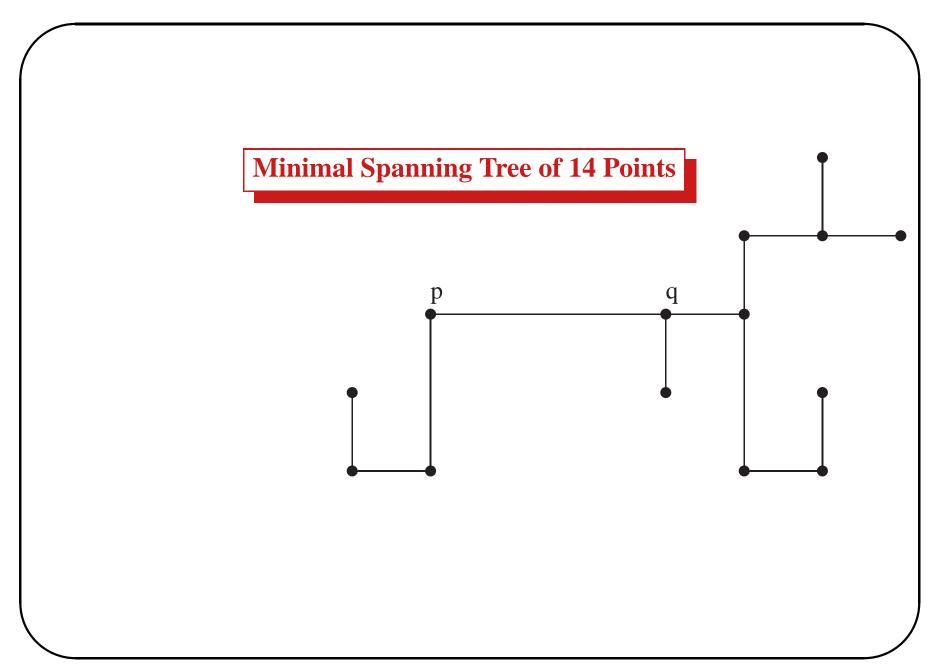
• From this, it can be shown that the criterion to be optimized in agglomerating c_1 and c_2 into new class c is:

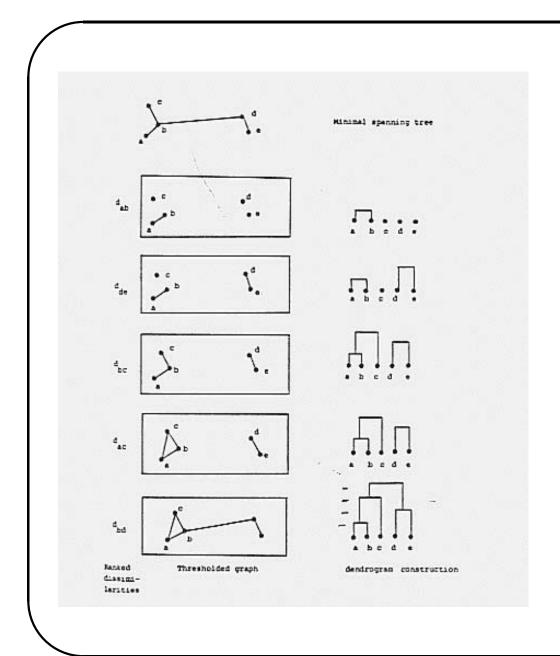
$$V(P) - V(Q) = V(c) - V(c_1) - V(c_2)$$
$$= \frac{|c_1| |c_2|}{|c_1| + |c_2|} ||\mathbf{c_1} - \mathbf{c_2}||^2,$$

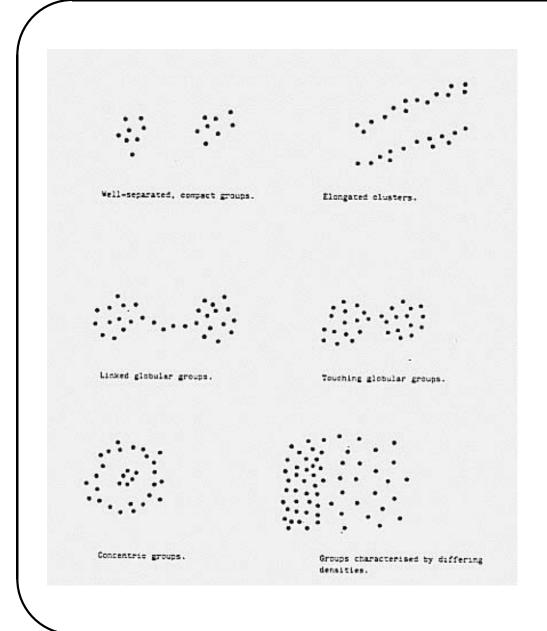
Graph Methods

Minimal Spanning Tree

- **Step 1** Select an arbitrary point and connect it to the least dissimilar neighbour. These two points constitute a subgraph of the MST.
- **Step 2** Connect the current subgraph to the least dissimilar neighbour of any of the members of the subgraph.
- **Step 3** Loop on Step 2, until all points are in the one subgraph: this, then, is the MST.

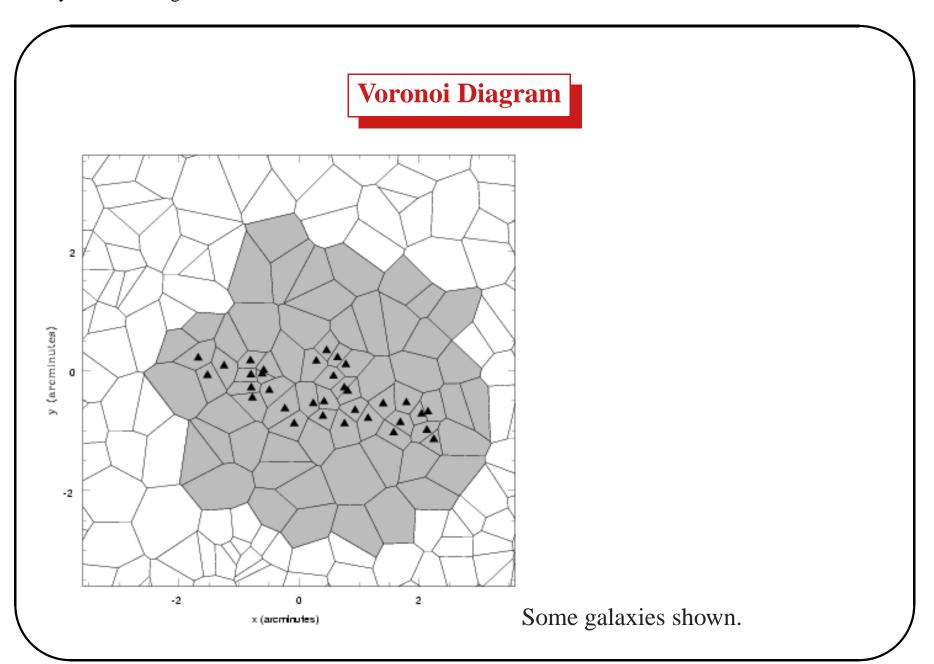






Voronoi Diagram

- M. Ramella, W. Boschin, D. Fadda and M. Nonino, Finding galaxy clusters using Voronoi tessellations, A&A 368, 776-786 (2001)
- For lots on Voronoi diagrams: http://www.voronoi.com/cgi-bin/display.voronoi_applications.php?cat=Applications
- Voronoi diagram: for given points i, we define the Voronoi cell or region of i as $\{x|d(x,i) \leq d(x,i')\}\ \forall i'.$
- Delaunay triangulation: perpendicular bisectors of Voronoi boundaries.
- Demo: http://www.csie.ntu.edu.tw/~b5506061/voronoi/Voronoi.html
- Theorem: MST ⊂ Delaunay triangulation.



Partitioning

Iterative optimization algorithm for the variance criterion

Step 1 Arbitrarily define a set of k cluster centres.

Step 2 Assign each object to the cluster to which it is closest (using the Euclidean distance, $d^2(i, p) = ||\mathbf{i} - \mathbf{p}||^2$).

Step 3 Redefine cluster centres on the basis of the current cluster memberships.

Step 4 If the totalled within class variances is better than at the previous iteration, then return to Step 2.

Partitioning – Properties

- Sub-optimal.
- Dependent on initial cluster centres.
- The two main steps define the EM algorithm. Expectation = mean; and Maximization = assignment step.
- Diday's nuées dynamiques.
- Widely used (since computational cost of hierarchical clustering is usually $O(n^2)$).

Partitioning: Späth's Exchange Algorithm

Exchange method for the minimum variance criterion

- **Step 1** Arbitrarily choose an initial partition.
- **Step 2** For each $i \in p$, see if the criterion is bettered by relocating i in another class q. If this is the case, we choose class q such that the criterion V is least; if it is not the case, we proceed to the next i.
- **Step 3** If the maximum possible number of iterations has not been reached, and if at least one relocation took place in Step 2, return again to Step 2.

Exchange Algorithm – Properties

- Clusters will not become empty.
- The change in variance brought about by relocating object i from class p to class q can be shown to be $\frac{|p|}{|p|-1} ||\mathbf{i} \mathbf{p}||^2 \frac{|q|}{|q|-1} ||\mathbf{i} \mathbf{q}||^2$

Mixture Modelling

• Data is a mixture of G multivariate Gaussians:

$$f_k(x;\theta) \sim \text{MVN}(\mu_k, \Sigma_k) \qquad k = 1, \dots, G$$

$$f(x;\theta) = \sum_{k=1}^{G} \pi_k f_k(x;\theta)$$

Mixing or prior probabilities,
$$\sum_{k=1}^{G} \pi_k = 1$$

• Estimate parameters θ , π by maximizing the mixture likelihood:

$$L(\theta, \gamma) = \prod_{i=1}^{n} f(x_i; \theta)$$

where x_i is the *i*th observation, and γ is a cluster assignment function.

Mixture Modelling – 2

- Implementation: hierarchical agglomerative; iterative relocation; EM; start with agglomerative and refine with EM.
- Choosing the number of clusters the Bayes Information Criterion (BIC). Bayes factor, $B = p(x \mid M_2)/p(x \mid M_1)$ $p(x \mid M_2) = \text{integrated likelihood of the mixture model 2 obtained by integrating over parameter space.}$
- Approximate the Bayes factor by the BIC:
 Let p(x | G) be the integrated likelihood of the data given that there are G clusters.

Then:

$$2 \log p(x \mid G) \approx 2l(x; \hat{\theta}, G) - m_G \log n = BIC$$

 $l(x; \hat{\theta}, G)$ is the maximized mixture log-likelihood with G clusters.

 m_G is the number of independent parameters to be estimated in the G-cluster model.

The larger the value of BIC, the better the model.

Example: Gamma-Ray Bursts

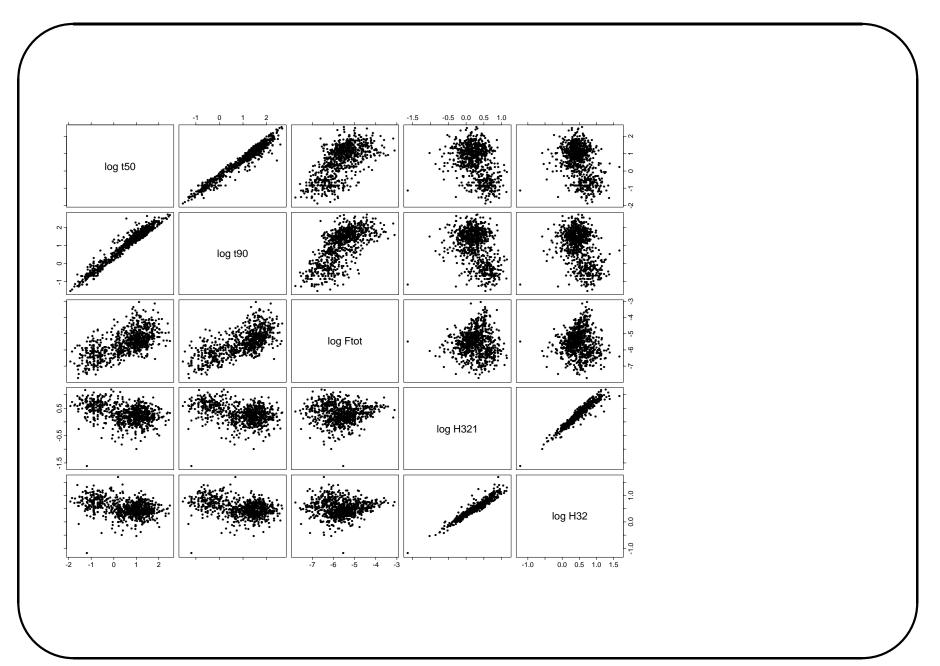
- Few gamma-ray burst (GRB) sources have astronomical counterparts at other wavebands. Hence empirical studies of GRBs have been largely restricted to the analysis of their gamma ray properties.
- Bulk properties such as fluence and spectral hardness are used.
- Studies fall into two categories: examination whether GRB bulk properties comprise a homogeneous population or are divided into distinct classes; and search for relationships between bulk properties.
- Generally accepted taxonomy of GRBs is division between short-hard and long-soft bursts.
- We use GRBs from the Third BATSE Catalog, from the Compton Gamma Ray Observatory. Data from 1996.
- There are roughly eleven variables of potential astrophysical interest: two

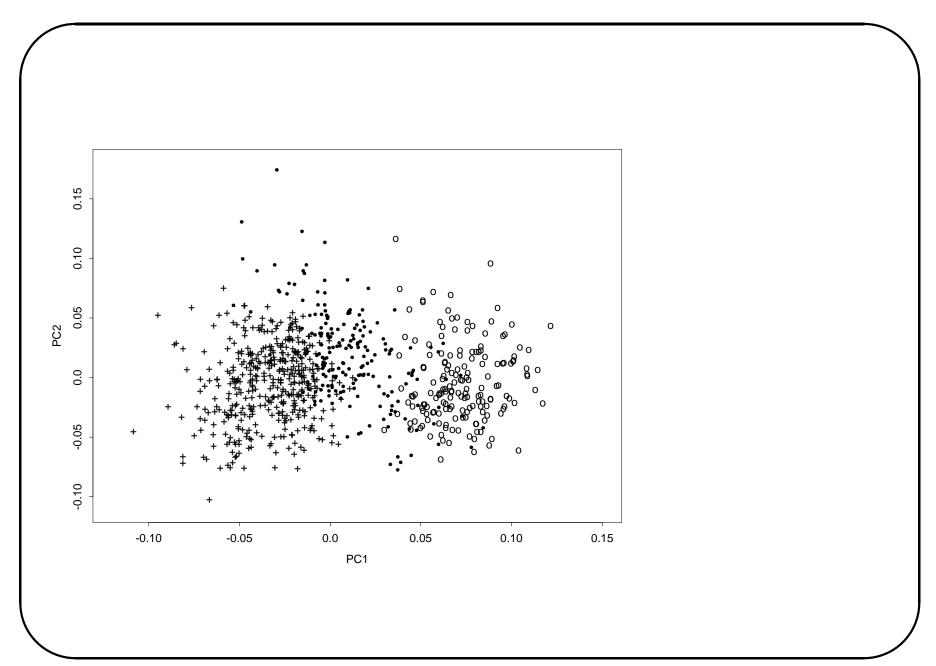
measures of location in Galactic coordinates, l and b; two measures of burst durations, the times within which 50% (T_{50}) and 90% (T_{90}) of the flux arrives; three peak fluxes P_{64} , P_{256} and P_{1024} measured in 64 ms, 256 ms and 1024 ms bins respectively; and four time-integrated fluences $F_1 - F_4$ in the 0-50 keV, 50-100 keV, 100-300 keV and > 300 keV spectral channels respectively

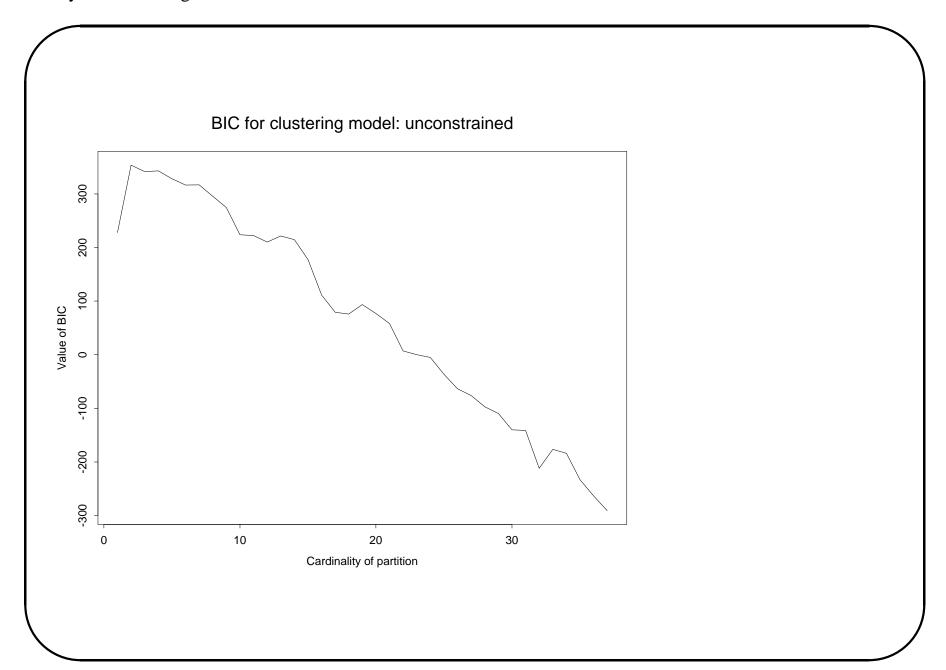
- Consider three composite variables: the total fluence, $F_T = F_1 + F_2 + F_3 + F_4$, and two measures of spectral hardness derived from the ratios of channel fluences, $H_{32} = F_3/F_2$ and $H_{321} = F_3/(F_1 + F_2)$. Of the 1122 listed bursts, 807 have data on all the variables described above.
- Our sample had 797 GRBs. For some analyses, we also used a subset of 644 bursts with 'debiased' durations, T_{90}^d . Here the durations are modified to account for the effect that brighter bursts will have signal above the noise for longer periods than fainter bursts with the same time profiles.
- We use log variables, rather than normalized or standardized variables.
- Our analysis was performed using $\log T_{50}$, $\log T_{90}$, $\log F_{tot}$, $\log P_{256}$, $\log H_{321}$ and $\log H_{32}$.

Example: Gamma-Ray Bursts. Plots To Follow.

- Reference: S. Mukherjee, E.D. Feigelson, G.J. Babu, F. Murtagh, C. Fraley and A. Raftery, "Three types of gamma ray bursts", The Astrophysical Journal, 508, 314-327, 1998.
- Pairwise plots of BATSE data showing strong correlation between variables 1 and 2, and 4 and 5.
- 3-cluster results on unconstrained model clustering (on variables 1, 3 and 4) in principal component space.
- Corresponding BIC values with maximum value corresponding to the 3-cluster solution.







Raftery's Cluster Modelling

• We will parametrize the standard spectral decomposition of Σ_k :

$$\Sigma_k = \lambda_k D_k A_k D_k^T$$

 λ_k is largest eigenvalue of Σ :

controls volume of cluster.

 D_k is matrix of eigenvectors:

controls orientation of cluster.

 A_k is diag $\{1, \alpha_{2k} \dots \alpha_{pk}\}$:

controls shape of cluster.

• Example 1: set shape, different sizes and orientations:

For p = 2 dimensional data,

$$A_k = \operatorname{diag}\{1, \alpha\}, \alpha = \lambda_2/\lambda_1$$

 $\alpha < 1 \Longrightarrow$ long and narrow cluster.

Use: finding aligned sets of points.

Raftery's Cluster Modelling – 2

- Example 2: hyperspherical clusters, different sizes: $\Sigma_k = \lambda_k I$ (I = identity matrix).
- Example 3: hyperspherical, same size (Ward's method): $\Sigma_k = \lambda I$.
- Example 4: unconstrained Σ_k .

A.J. Scott and M.J. Symons, "Clustering methods based on likelihood ratio criteria", Biometrics, 27, 387–397, 1971.

 $W_k = SSCP$ matrix for cluster k,

 $x_k = \text{mean of cluster } k$,

 n_k = cardinality of cluster k,

$$W_k = \sum_{i \in \text{cluster}} (x_i - x_k)(x_i - x_k)^T$$

 $W_k/n_k = \text{MLE of } \Sigma_k$.

Maximize
$$\sum_{k=1}^{G} n_k \log \left| \frac{W_k}{n_k} \right|$$
 (| . | = det).

Kohonen Self-Organizing Feature Map

- Regular grid output representational or display space.
- Determine vectors w_k , such that inputs x_i are parsimoniously summarized (clustering objective); and in addition the vectors w_k are positioned in representational space so that similar vectors are close (low-dimensional projection objective) in representation space.
- Clustering: Associate each x_i with some one w_k such that $k = argmin \parallel x_i w_k \parallel$

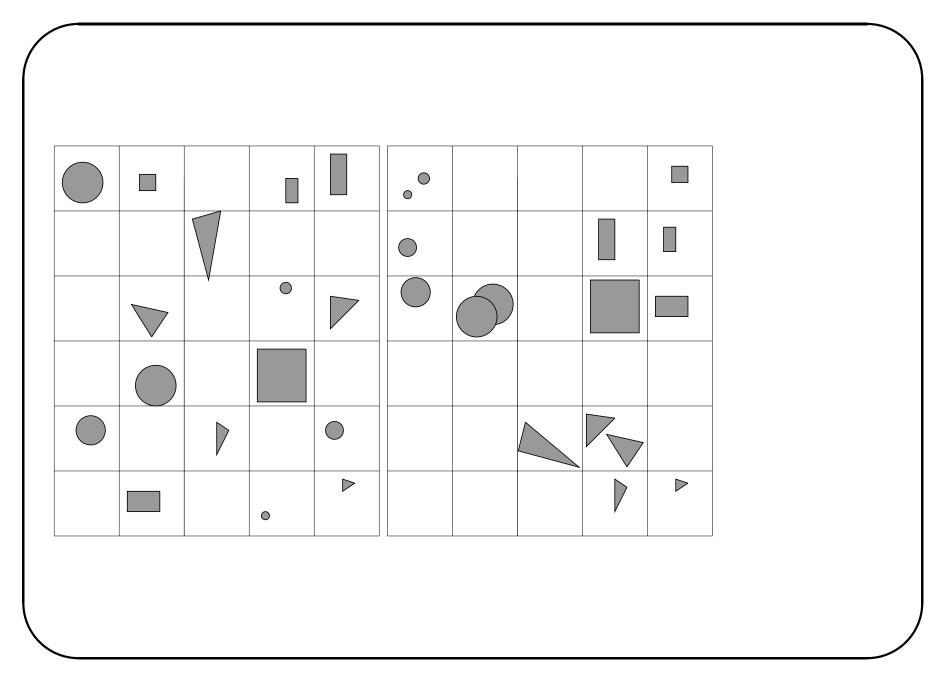
Low-Dimensional projection:

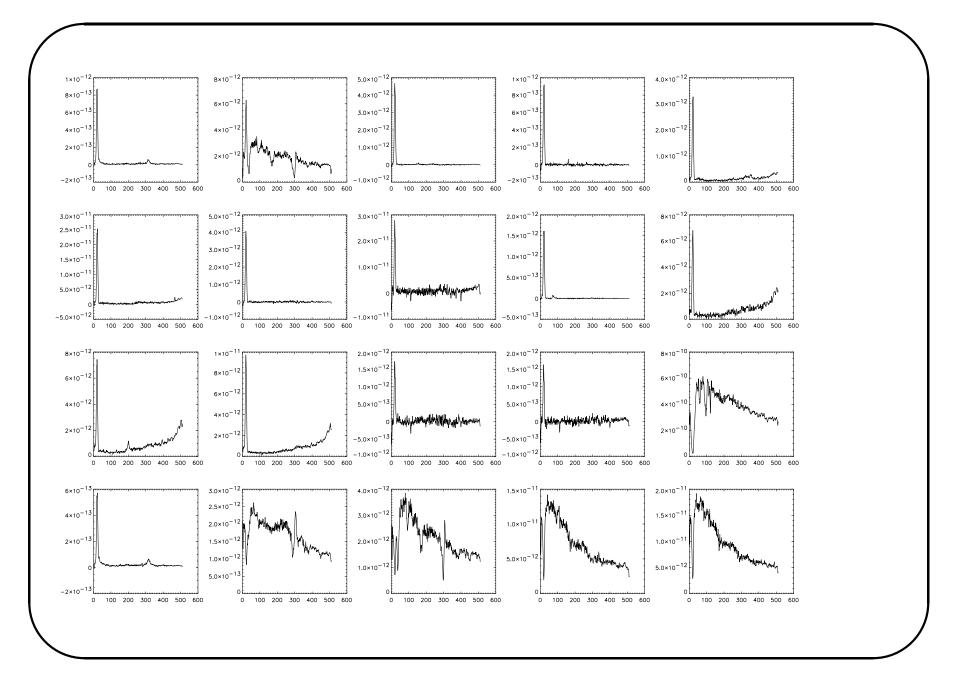
$$\| w_k - w_k' \| < \| w_k - w_k'' \| \Longrightarrow \| k - k' \| \le \| k - k'' \|$$

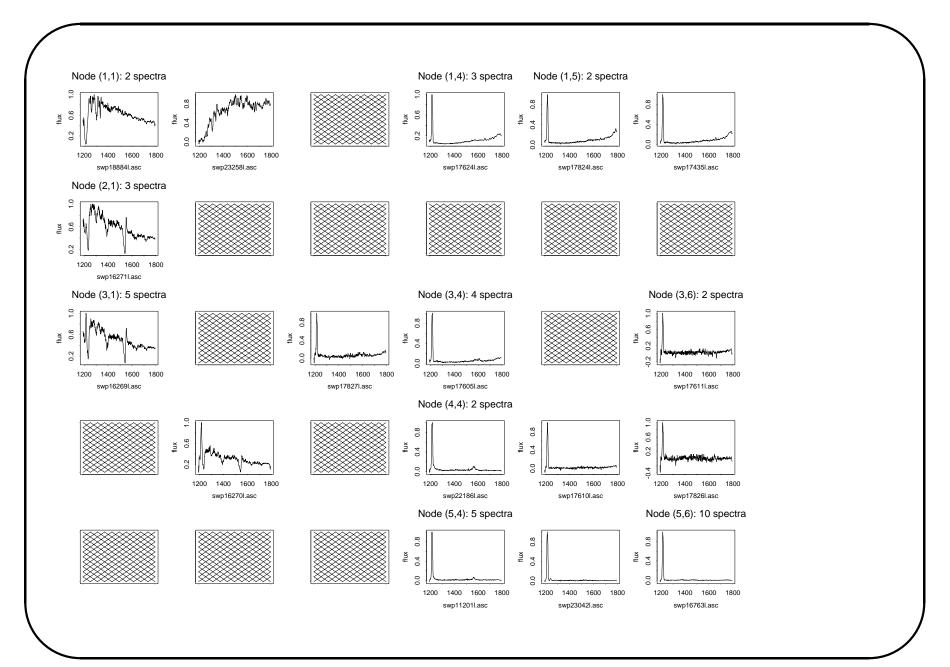
- Initial random choice of values for w_k .
- Updated the set of w_k ($\forall k$) on the basis of presentation of input vectors, x_i .
- Processing one x_i is termed an iteration. Going through all x_i once is termed an

epoch.

- Update not just the so-called winner w_k , but also neighbors of w_k with respect to the representational space.
- The neighborhood is initially chosen to be quite large (e.g. a 4×4 zone) and as the epochs proceed, is reduced to 1×1 (i.e. no neighborhood).
- Example: set of 45 spectra of the complex AGN (active galactic nucleus) object, NGC 4151, taken with the IUE (International Ultraviolet Explorer) satellite.
- 45 spectra observed with the SWP spectral camera, with wavelengths from 1191.2 Å to approximately 1794.4 Å, with values at 512 interval steps.
- We will show sample of 20 spectra; and then Kohonen map of these.



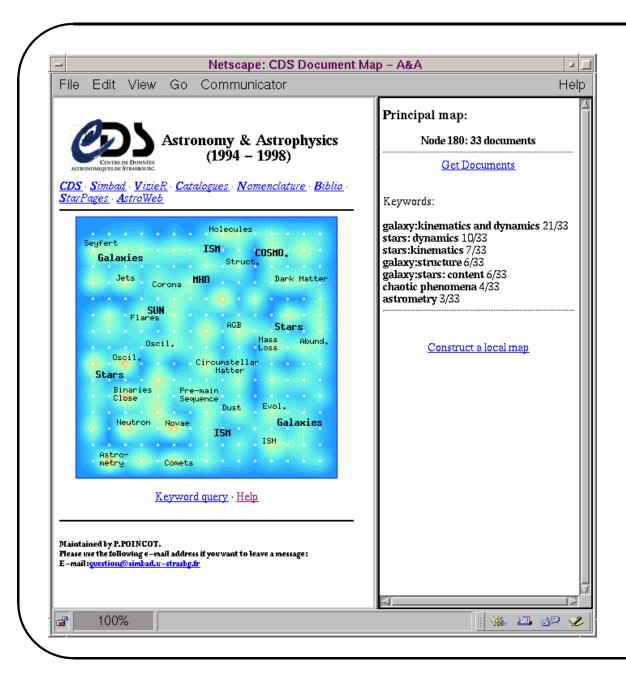


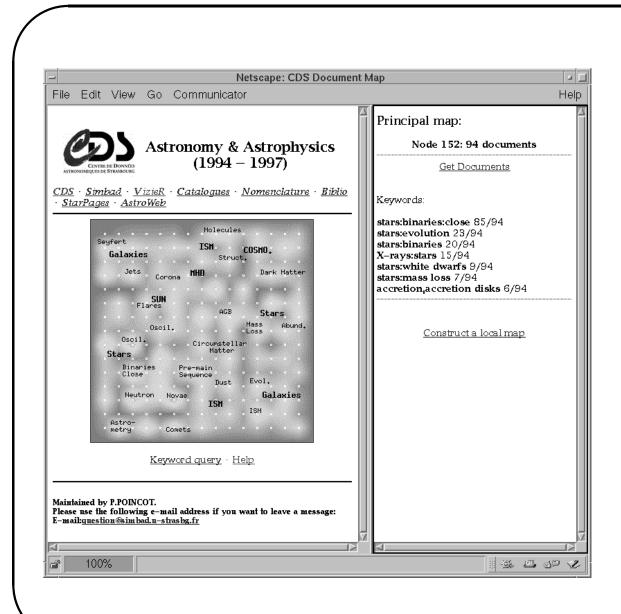


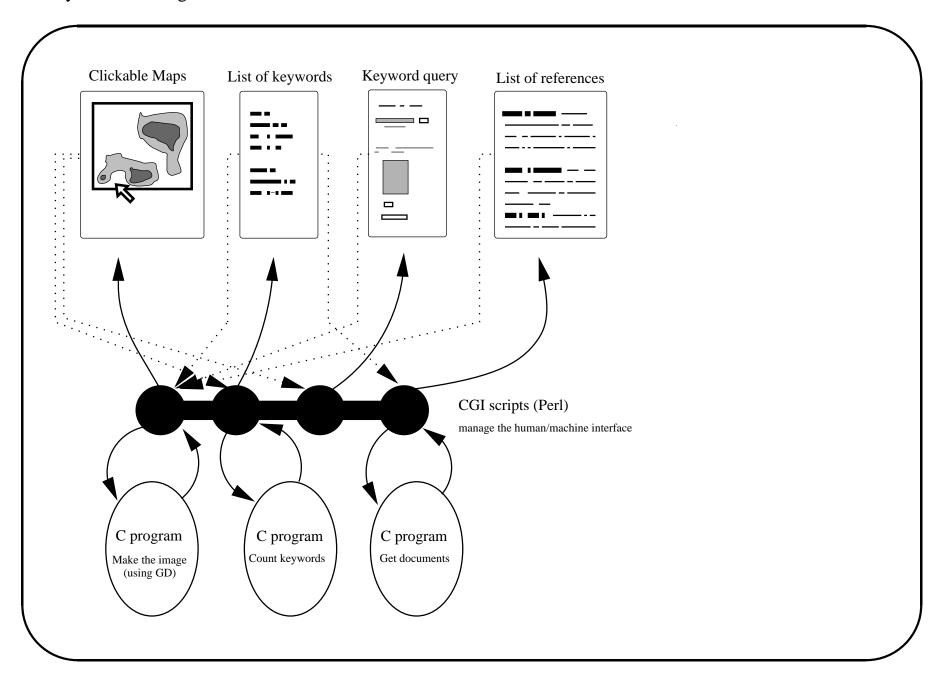
Kohonen Map: Interactive User Interface

- About 10,000 documents described by 269 keywords from articles published in A&A; also in ApJ.
- 15×15 grid was used for the principal map, and a 5×5 grid for detailed maps.
- User clicks on thematic area, or enters keywords.
- A detailed map is produced. Any document listed allows access to the full document through ADS.
- This system is server-side, based on imagemap and CGI scripts.

Seyfert Galaxies		IS	olecule M Struc	COSHO.	
0 0 0			suruc		
Jets	Corona	HHD		Dark	(Matter
Flar	SUN				
1000 C			AGB	Sta	rs.
	Oscil.			Mass Loss	Abund.
Oscil.			umstell Matter	ar	
Stars			. (46)		
Binarie: Close	s P S	re-mai: equenc	n e		
			Dust	Evol.	
Neutror) Nova	е.	ISH "	Gal	laxies
			Y.A.	ISM	
Astro- metry	Come	ts			







Some References

- J.D. Barrow, S.P. Bhavsar and D.H. Sonoda, "Minimal spanning trees filaments and galaxy clustering", *Monthly Notices of the Royal Astronomical Society*, **216**, 17–35, 1985.
- C.R. Cowley and R. Henry, "Numerical taxonomy of Ap and Am stars", *The Astrophysical Journal*, **233**, 633–643, 1979.
- J.K. Davies, N. Eaton, S.F. Green, R.S. McCheyne and A.J. Meadows, "The classification of asteroids", *Vistas in Astronomy*, **26**, 243–251, 1982.
- J.P. Huchra and M.J. Geller, "Groups of galaxies. I. Nearby groups", *The Astrophysical Journal*, **257**, 423–437, 1982
- J.F. Jarvis and J.A. Tyson, "FOCAS: faint object classification and analysis system", *The Astronomical Journal*, **86**, 476–495, 1981.
- M.O. Mennessier, "A classification of miras from their visual and near-infrared

light curves: an attempt to correlate them with their evolution", *Astronomy and Astrophysics*, **144**, 463–470, 1985.

- D.J. Tholen, "Asteroid taxonomy from cluster analysis of photometry", PhD Thesis, University of Arizona, 1984.
- P. Poinçot, S. Lesteven and F. Murtagh, "A spatial user interface to the astronomical literature", *Astronomy and Astrophysics Supplement Series*, **130**, 183–191, 1998.
- P. Poinçot, S. Lesteven and F. Murtagh, "Maps of information spaces: assessments from astronomy", *Journal of the American Society for Information Science*, **51**, 1081-1089, 2000.
- D. Egret, R.J. Hanisch and F. Murtagh, "Search and discovery tools for astronomical on-line resources and services", *Astronomy and Astrophysics Supplement*, **143**, 137-143, 2000